Answer :
To determine the area of a kite, you can use the formula for the area of a kite, which is given by:
[tex]\[ \text{Area} = \frac{1}{2} \times \text{diagonal}_1 \times \text{diagonal}_2 \][/tex]
In this context, the width and height of the kite act as the lengths of the diagonals of the kite. The dimensions provided for the kite are:
- Width = 12 cm
- Height = 16 cm
Plugging these values into the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times 12 \, \text{cm} \times 16 \, \text{cm} \][/tex]
First, calculate the product of the diagonals:
[tex]\[ 12 \, \text{cm} \times 16 \, \text{cm} = 192 \, \text{cm}^2 \][/tex]
Then, multiply by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} \times 192 \, \text{cm}^2 = 96 \, \text{cm}^2 \][/tex]
Therefore, the area of the logo is:
[tex]\[ \boxed{96 \, \text{sq. cm}} \][/tex]
[tex]\[ \text{Area} = \frac{1}{2} \times \text{diagonal}_1 \times \text{diagonal}_2 \][/tex]
In this context, the width and height of the kite act as the lengths of the diagonals of the kite. The dimensions provided for the kite are:
- Width = 12 cm
- Height = 16 cm
Plugging these values into the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times 12 \, \text{cm} \times 16 \, \text{cm} \][/tex]
First, calculate the product of the diagonals:
[tex]\[ 12 \, \text{cm} \times 16 \, \text{cm} = 192 \, \text{cm}^2 \][/tex]
Then, multiply by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} \times 192 \, \text{cm}^2 = 96 \, \text{cm}^2 \][/tex]
Therefore, the area of the logo is:
[tex]\[ \boxed{96 \, \text{sq. cm}} \][/tex]