Solve [tex]$-4t - 5 \ \textgreater \ 2t + 13$[/tex] for [tex]t[/tex].

A. [tex]t \ \textless \ -3[/tex]
B. [tex]t \ \textgreater \ -3[/tex]
C. [tex]t \ \textgreater \ -9[/tex]
D. [tex]t \ \textless \ -9[/tex]



Answer :

Let's solve the inequality [tex]\( -4t - 5 > 2t + 13 \)[/tex] for [tex]\( t \)[/tex].

### Step-by-Step Solution:

1. Move all terms involving [tex]\( t \)[/tex] to one side of the inequality.

To do this, we should subtract [tex]\( 2t \)[/tex] from both sides:
[tex]\[ -4t - 5 - 2t > 2t + 13 - 2t \][/tex]
Simplifying the terms, we get:
[tex]\[ -6t - 5 > 13 \][/tex]

2. Move the constant term to the other side of the inequality.

To isolate the term involving [tex]\( t \)[/tex], we add 5 to both sides:
[tex]\[ -6t - 5 + 5 > 13 + 5 \][/tex]
Simplifying the constants, we get:
[tex]\[ -6t > 18 \][/tex]

3. Isolate [tex]\( t \)[/tex] by dividing both sides by the coefficient of [tex]\( t \)[/tex].

Since the coefficient of [tex]\( t \)[/tex] is -6, we divide both sides of the inequality by -6. Remember that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-6t}{-6} < \frac{18}{-6} \][/tex]

Simplifying this, we obtain:
[tex]\[ t < -3 \][/tex]

Therefore, the solution to the inequality [tex]\( -4t - 5 > 2t + 13 \)[/tex] is [tex]\( t < -3 \)[/tex].

In the list of provided options, the correct one is:
[tex]\[ t < -3. \][/tex]