Answer :
To find the difference between the two polynomials [tex]\( \left(x^4 + x^3 + x^2 + x\right) \)[/tex] and [tex]\( \left(x^4 - x^3 + x^2 - x\right) \)[/tex], we need to perform polynomial subtraction:
Step 1: Write down the given polynomials.
The first polynomial is:
[tex]\[ x^4 + x^3 + x^2 + x \][/tex]
The second polynomial is:
[tex]\[ x^4 - x^3 + x^2 - x \][/tex]
Step 2: Align the terms by their degrees and then subtract the second polynomial from the first.
[tex]\[ \begin{array}{r} \left(x^4 + x^3 + x^2 + x \right) \\ -\left(x^4 - x^3 + x^2 - x \right) \\ \end{array} \][/tex]
Step 3: Perform the subtraction term by term:
[tex]\[ \begin{array}{rl} x^4 \phantom{{}-{}} & - x^4 = 0 \\ x^3 \phantom{{}+{}} & - (- x^3) = x^3 + x^3 = 2x^3 \\ x^2 \phantom{{}-{}} & - x^2 = 0 \\ x \phantom{{}+{}} & - (- x) = x + x = 2x \\ \end{array} \][/tex]
Step 4: Combine the results:
[tex]\[ 0x^4 + 2x^3 + 0x^2 + 2x \][/tex]
So the equation simplifies to:
[tex]\[ 2x^3 + 2x \][/tex]
Therefore, the difference of the polynomials is:
[tex]\[ 2x^3 + 2x \][/tex]
Among the provided options, the correct one is:
[tex]\[ 2x^3 + 2x \][/tex]
Step 1: Write down the given polynomials.
The first polynomial is:
[tex]\[ x^4 + x^3 + x^2 + x \][/tex]
The second polynomial is:
[tex]\[ x^4 - x^3 + x^2 - x \][/tex]
Step 2: Align the terms by their degrees and then subtract the second polynomial from the first.
[tex]\[ \begin{array}{r} \left(x^4 + x^3 + x^2 + x \right) \\ -\left(x^4 - x^3 + x^2 - x \right) \\ \end{array} \][/tex]
Step 3: Perform the subtraction term by term:
[tex]\[ \begin{array}{rl} x^4 \phantom{{}-{}} & - x^4 = 0 \\ x^3 \phantom{{}+{}} & - (- x^3) = x^3 + x^3 = 2x^3 \\ x^2 \phantom{{}-{}} & - x^2 = 0 \\ x \phantom{{}+{}} & - (- x) = x + x = 2x \\ \end{array} \][/tex]
Step 4: Combine the results:
[tex]\[ 0x^4 + 2x^3 + 0x^2 + 2x \][/tex]
So the equation simplifies to:
[tex]\[ 2x^3 + 2x \][/tex]
Therefore, the difference of the polynomials is:
[tex]\[ 2x^3 + 2x \][/tex]
Among the provided options, the correct one is:
[tex]\[ 2x^3 + 2x \][/tex]