What is the difference of the polynomials?

[tex]\[ \left(x^4 + x^3 + x^2 + x\right) - \left(x^4 - x^3 + x^2 - x\right) \][/tex]

A. [tex]\(2x^2\)[/tex]

B. [tex]\(2x^3 + 2x\)[/tex]

C. [tex]\(x^6 + x^2\)[/tex]

D. [tex]\(2x^5 + 2x^2\)[/tex]



Answer :

To find the difference between the two polynomials [tex]\( \left(x^4 + x^3 + x^2 + x\right) \)[/tex] and [tex]\( \left(x^4 - x^3 + x^2 - x\right) \)[/tex], we need to perform polynomial subtraction:

Step 1: Write down the given polynomials.

The first polynomial is:
[tex]\[ x^4 + x^3 + x^2 + x \][/tex]

The second polynomial is:
[tex]\[ x^4 - x^3 + x^2 - x \][/tex]

Step 2: Align the terms by their degrees and then subtract the second polynomial from the first.

[tex]\[ \begin{array}{r} \left(x^4 + x^3 + x^2 + x \right) \\ -\left(x^4 - x^3 + x^2 - x \right) \\ \end{array} \][/tex]

Step 3: Perform the subtraction term by term:

[tex]\[ \begin{array}{rl} x^4 \phantom{{}-{}} & - x^4 = 0 \\ x^3 \phantom{{}+{}} & - (- x^3) = x^3 + x^3 = 2x^3 \\ x^2 \phantom{{}-{}} & - x^2 = 0 \\ x \phantom{{}+{}} & - (- x) = x + x = 2x \\ \end{array} \][/tex]

Step 4: Combine the results:

[tex]\[ 0x^4 + 2x^3 + 0x^2 + 2x \][/tex]

So the equation simplifies to:

[tex]\[ 2x^3 + 2x \][/tex]

Therefore, the difference of the polynomials is:
[tex]\[ 2x^3 + 2x \][/tex]

Among the provided options, the correct one is:
[tex]\[ 2x^3 + 2x \][/tex]