For what value of [tex]$x$[/tex] is [tex]$\sin (x) = \cos (32^{\circ})$[/tex], where [tex][tex]$0^{\circ} \ \textless \ x \ \textless \ 90^{\circ}$[/tex][/tex]?

A. [tex]$32^{\circ}$[/tex]
B. [tex]$13^{\circ}$[/tex]
C. [tex][tex]$58^{\circ}$[/tex][/tex]
D. [tex]$64^{\circ}$[/tex]



Answer :

To solve the problem where we need to find the value of [tex]\( x \)[/tex] such that [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] within the range [tex]\( 0^\circ < x < 90^\circ \)[/tex], we can use the trigonometric identity:

[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]

Given this identity, we set the argument of the cosine function on the right-hand side to be equal to 32 degrees:

[tex]\[ \cos(32^\circ) \][/tex]

Thus, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]

Using the identity:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]

We can equate the right-hand sides:
[tex]\[ \cos(32^\circ) = \cos(90^\circ - x) \][/tex]

For the equality to hold true within the specified range, it must be that:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]

To find [tex]\( x \)[/tex], solve the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]

Subtract 32 degrees from 90 degrees:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]

Thus, we get:
[tex]\[ x = 58^\circ \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that satisfies the condition [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] within the range [tex]\( 0^\circ < x < 90^\circ \)[/tex] is:
[tex]\[ x = 58^\circ \][/tex]

So the correct answer is:
[tex]\[ \boxed{58^\circ} \][/tex]