Solve for [tex]$x$[/tex] in the equation [tex]$x^2 - 12x + 59 = 0$[/tex].

A. [tex][tex]$x = -12 \pm \sqrt{85}$[/tex][/tex]
B. [tex]$x = -6 \pm \sqrt{23}i$[/tex]
C. [tex]$x = 6 \pm \sqrt{23}i$[/tex]
D. [tex][tex]$x = 12 \pm \sqrt{85}$[/tex][/tex]



Answer :

To solve the quadratic equation [tex]\( x^2 - 12x + 59 = 0 \)[/tex], we should use the quadratic formula. The quadratic formula is:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

For our equation [tex]\( x^2 - 12x + 59 = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -12 \)[/tex]
- [tex]\( c = 59 \)[/tex]

First, we calculate the discriminant [tex]\( \Delta \)[/tex]:

[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-12)^2 - 4 \cdot 1 \cdot 59 \][/tex]
[tex]\[ \Delta = 144 - 236 \][/tex]
[tex]\[ \Delta = -92 \][/tex]

Since the discriminant is negative ([tex]\(\Delta = -92\)[/tex]), we know that the roots will be complex numbers.

Now we can find the roots using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( \Delta \)[/tex]:

[tex]\[ x = \frac{12 \pm \sqrt{-92}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{12 \pm \sqrt{92}i}{2} \][/tex]

We can simplify [tex]\( \sqrt{92} \)[/tex]:

[tex]\[ \sqrt{92} = \sqrt{4 \cdot 23} = 2\sqrt{23} \][/tex]

So the equation for [tex]\( x \)[/tex] becomes:

[tex]\[ x = \frac{12 \pm 2\sqrt{23}i}{2} \][/tex]
[tex]\[ x = 6 \pm \sqrt{23}i \][/tex]

Thus, the roots of the quadratic equation [tex]\( x^2 - 12x + 59 = 0 \)[/tex] are:

[tex]\[ x = 6 \pm \sqrt{23}i \][/tex]

Therefore, the correct answer is:

[tex]\[ x = 6 \pm \sqrt{23}i \][/tex]