Answer :
To determine which choice yields the largest profit, we need to calculate the total profit for each choice using the given profit per donut and per bagel.
1. Profit per Donut: [tex]\( \$0.30 \)[/tex]
2. Profit per Bagel: [tex]\( \$0.75 \)[/tex]
We'll use these profit values to compute the total profit for each choice (A, B, and C).
### Choice A:
- Quantity of Donuts: 600
- Quantity of Bagels: 70
Total Profit for Choice A:
[tex]\[ \text{Profit from Donuts} = 600 \times 0.30 = 180.00 \][/tex]
[tex]\[ \text{Profit from Bagels} = 70 \times 0.75 = 52.50 \][/tex]
[tex]\[ \text{Total Profit for Choice A} = 180.00 + 52.50 = 232.50 \][/tex]
### Choice B:
- Quantity of Donuts: 500
- Quantity of Bagels: 140
Total Profit for Choice B:
[tex]\[ \text{Profit from Donuts} = 500 \times 0.30 = 150.00 \][/tex]
[tex]\[ \text{Profit from Bagels} = 140 \times 0.75 = 105.00 \][/tex]
[tex]\[ \text{Total Profit for Choice B} = 150.00 + 105.00 = 255.00 \][/tex]
### Choice C:
- Quantity of Donuts: 500
- Quantity of Bagels: 40
Total Profit for Choice C:
[tex]\[ \text{Profit from Donuts} = 500 \times 0.30 = 150.00 \][/tex]
[tex]\[ \text{Profit from Bagels} = 40 \times 0.75 = 30.00 \][/tex]
[tex]\[ \text{Total Profit for Choice C} = 150.00 + 30.00 = 180.00 \][/tex]
### Comparison of the Total Profits:
- Total Profit for Choice A: [tex]$232.50 - Total Profit for Choice B: $[/tex]255.00
- Total Profit for Choice C: [tex]$180.00 Among these, the choice that yields the largest profit is Choice B with a total profit of $[/tex]255.00.
Thus, Choice [tex]$\boxed{B}$[/tex] yields the largest profit.
1. Profit per Donut: [tex]\( \$0.30 \)[/tex]
2. Profit per Bagel: [tex]\( \$0.75 \)[/tex]
We'll use these profit values to compute the total profit for each choice (A, B, and C).
### Choice A:
- Quantity of Donuts: 600
- Quantity of Bagels: 70
Total Profit for Choice A:
[tex]\[ \text{Profit from Donuts} = 600 \times 0.30 = 180.00 \][/tex]
[tex]\[ \text{Profit from Bagels} = 70 \times 0.75 = 52.50 \][/tex]
[tex]\[ \text{Total Profit for Choice A} = 180.00 + 52.50 = 232.50 \][/tex]
### Choice B:
- Quantity of Donuts: 500
- Quantity of Bagels: 140
Total Profit for Choice B:
[tex]\[ \text{Profit from Donuts} = 500 \times 0.30 = 150.00 \][/tex]
[tex]\[ \text{Profit from Bagels} = 140 \times 0.75 = 105.00 \][/tex]
[tex]\[ \text{Total Profit for Choice B} = 150.00 + 105.00 = 255.00 \][/tex]
### Choice C:
- Quantity of Donuts: 500
- Quantity of Bagels: 40
Total Profit for Choice C:
[tex]\[ \text{Profit from Donuts} = 500 \times 0.30 = 150.00 \][/tex]
[tex]\[ \text{Profit from Bagels} = 40 \times 0.75 = 30.00 \][/tex]
[tex]\[ \text{Total Profit for Choice C} = 150.00 + 30.00 = 180.00 \][/tex]
### Comparison of the Total Profits:
- Total Profit for Choice A: [tex]$232.50 - Total Profit for Choice B: $[/tex]255.00
- Total Profit for Choice C: [tex]$180.00 Among these, the choice that yields the largest profit is Choice B with a total profit of $[/tex]255.00.
Thus, Choice [tex]$\boxed{B}$[/tex] yields the largest profit.