Point [tex]$P$[/tex] partitions the directed line segment from [tex]$A$[/tex] to [tex][tex]$B$[/tex][/tex] into the ratio [tex]$3: 4$[/tex]. Will [tex]$P$[/tex] be closer to [tex][tex]$A$[/tex][/tex] or [tex]$B$[/tex]? Why?

A. [tex]$P$[/tex] will be closer to [tex][tex]$A$[/tex][/tex] because it will be [tex]\frac{3}{7}[/tex] the distance from [tex]$A$[/tex] to [tex]$B$[/tex].
B. [tex][tex]$P$[/tex][/tex] will be closer to [tex]$A$[/tex] because it will be [tex]\frac{4}{7}[/tex] the distance from [tex]$A$[/tex] to [tex][tex]$B$[/tex][/tex].
C. [tex]$P$[/tex] will be closer to [tex]$B$[/tex] because it will be [tex]\frac{3}{7}[/tex] the distance from [tex][tex]$B$[/tex][/tex] to [tex]$A$[/tex].
D. [tex]$P$[/tex] will be closer to [tex][tex]$B$[/tex][/tex] because it will be [tex]\frac{4}{7}[/tex] the distance from [tex]$B$[/tex] to [tex]$A$[/tex].



Answer :

To determine the position of point [tex]\(P\)[/tex] along the line segment from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] given that the segment is partitioned in the ratio [tex]\(3:4\)[/tex], let’s follow these steps:

1. Understand the Ratio: The ratio [tex]\(3:4\)[/tex] indicates that the entire segment is divided into two parts such that for every 3 units of distance on one side, there are 4 units of distance on the other.

2. Total Parts: Add the parts of the ratio together to find the total parts:
[tex]\[ 3 + 4 = 7 \][/tex]
So, the entire segment is divided into 7 equal parts.

3. Distance from [tex]\(A\)[/tex] to [tex]\(P\)[/tex]: [tex]\(P\)[/tex] is [tex]\(3/7\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex], meaning it covers 3 out of the 7 parts of the total length from [tex]\(A\)[/tex] to [tex]\(B\)[/tex].
[tex]\[ \text{Distance from } A \text{ to } P = 3/7 \][/tex]

4. Distance from [tex]\(P\)[/tex] to [tex]\(B\)[/tex]: Similarly, the remaining segment from [tex]\(P\)[/tex] to [tex]\(B\)[/tex] is [tex]\(4/7\)[/tex] of the total distance.
[tex]\[ \text{Distance from } P \text{ to } B = 4/7 \][/tex]

Since [tex]\(P\)[/tex] is positioned [tex]\(3/7\)[/tex] the distance from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] (less than half the total distance) and [tex]\(4/7\)[/tex] the distance from [tex]\(P\)[/tex] to [tex]\(B\)[/tex] (more than half the total distance), [tex]\(P\)[/tex] is closer to [tex]\(A\)[/tex] than to [tex]\(B\)[/tex].

Thus, the correct answer is:
[tex]\[ P \text{ will be closer to } A \text{ because it will be } \frac{3}{7} \text{ the distance from } A \text{ to } B. \][/tex]

So, you should choose the first option:
[tex]\[ \text{P will be closer to } A \text{ because it will be } \frac{3}{7} \text{ the distance from } A \text{ to } B. \][/tex]