Answer :

To simplify the expression [tex]\((12x - 14) - (3x + 9) - (-4 - 1)\)[/tex], we will follow a detailed step-by-step process:

1. Distribute the negative signs:

We start with the given expression:
[tex]\[ (12x - 14) - (3x + 9) - (-4 - 1) \][/tex]

Distribute the negative sign into the parentheses:
[tex]\[ (12x - 14) - 3x - 9 - (-4 - 1) \][/tex]

Notice that subtracting a negative is the same as adding a positive, so:
[tex]\[ (12x - 14) - 3x - 9 + 4 + 1 \][/tex]

2. Combine like terms:

Group the terms involving [tex]\(x\)[/tex] together and the constant terms together:
[tex]\[ 12x - 3x - 14 - 9 + 4 + 1 \][/tex]

Combine the [tex]\(x\)[/tex] terms first:
[tex]\[ (12x - 3x) - 14 - 9 + 4 + 1 = 9x - 14 - 9 + 4 + 1 \][/tex]

Next, combine the constant terms:
[tex]\[ -14 - 9 + 4 + 1 = -23 + 4 + 1 \][/tex]

Simplify further:
[tex]\[ -23 + 4 = -19 \][/tex]
[tex]\[ -19 + 1 = -18 \][/tex]

3. Finalize the expression:

Combining the simplified terms, we get:
[tex]\[ 9x - 18 \][/tex]

Therefore, the simplified expression is:
[tex]\( 9x - 18 \)[/tex]

The answer is [tex]\( \boxed{A \, 9x - 18} \)[/tex].