Answer :
To simplify the expression [tex]\((12x - 14) - (3x + 9) - (-4 - 1)\)[/tex], we will follow a detailed step-by-step process:
1. Distribute the negative signs:
We start with the given expression:
[tex]\[ (12x - 14) - (3x + 9) - (-4 - 1) \][/tex]
Distribute the negative sign into the parentheses:
[tex]\[ (12x - 14) - 3x - 9 - (-4 - 1) \][/tex]
Notice that subtracting a negative is the same as adding a positive, so:
[tex]\[ (12x - 14) - 3x - 9 + 4 + 1 \][/tex]
2. Combine like terms:
Group the terms involving [tex]\(x\)[/tex] together and the constant terms together:
[tex]\[ 12x - 3x - 14 - 9 + 4 + 1 \][/tex]
Combine the [tex]\(x\)[/tex] terms first:
[tex]\[ (12x - 3x) - 14 - 9 + 4 + 1 = 9x - 14 - 9 + 4 + 1 \][/tex]
Next, combine the constant terms:
[tex]\[ -14 - 9 + 4 + 1 = -23 + 4 + 1 \][/tex]
Simplify further:
[tex]\[ -23 + 4 = -19 \][/tex]
[tex]\[ -19 + 1 = -18 \][/tex]
3. Finalize the expression:
Combining the simplified terms, we get:
[tex]\[ 9x - 18 \][/tex]
Therefore, the simplified expression is:
[tex]\( 9x - 18 \)[/tex]
The answer is [tex]\( \boxed{A \, 9x - 18} \)[/tex].
1. Distribute the negative signs:
We start with the given expression:
[tex]\[ (12x - 14) - (3x + 9) - (-4 - 1) \][/tex]
Distribute the negative sign into the parentheses:
[tex]\[ (12x - 14) - 3x - 9 - (-4 - 1) \][/tex]
Notice that subtracting a negative is the same as adding a positive, so:
[tex]\[ (12x - 14) - 3x - 9 + 4 + 1 \][/tex]
2. Combine like terms:
Group the terms involving [tex]\(x\)[/tex] together and the constant terms together:
[tex]\[ 12x - 3x - 14 - 9 + 4 + 1 \][/tex]
Combine the [tex]\(x\)[/tex] terms first:
[tex]\[ (12x - 3x) - 14 - 9 + 4 + 1 = 9x - 14 - 9 + 4 + 1 \][/tex]
Next, combine the constant terms:
[tex]\[ -14 - 9 + 4 + 1 = -23 + 4 + 1 \][/tex]
Simplify further:
[tex]\[ -23 + 4 = -19 \][/tex]
[tex]\[ -19 + 1 = -18 \][/tex]
3. Finalize the expression:
Combining the simplified terms, we get:
[tex]\[ 9x - 18 \][/tex]
Therefore, the simplified expression is:
[tex]\( 9x - 18 \)[/tex]
The answer is [tex]\( \boxed{A \, 9x - 18} \)[/tex].