Solve the system of equations. Enter the smallest x-coordinate first.

[tex]\[
\begin{cases}
y = x^2 - 6x + 5 \\
y = 2x - 7
\end{cases}
\][/tex]

([ ? ], [ ]) and ([ ], [ ])



Answer :

To solve the given system of equations:

[tex]\[ \left\{\begin{array}{l} y = x^2 - 6x + 5 \\ y = 2x - 7 \end{array}\right. \][/tex]

we need to find the points [tex]\((x, y)\)[/tex] where the two equations intersect.

1. Step 1: Set the equations equal to each other because at the points of intersection the [tex]\(y\)[/tex]-values from both equations must be equal:

[tex]\[ x^2 - 6x + 5 = 2x - 7 \][/tex]

2. Step 2: Rearrange the equation to set it to zero:

[tex]\[ x^2 - 6x + 5 - 2x + 7 = 0 \\ x^2 - 8x + 12 = 0 \][/tex]

3. Step 3: Factor the quadratic equation:

[tex]\[ x^2 - 8x + 12 = (x - 2)(x - 6) = 0 \][/tex]

4. Step 4: Solve for [tex]\(x\)[/tex]:

[tex]\[ x - 2 = 0 \quad \text{or} \quad x - 6 = 0 \\ x = 2 \quad \text{or} \quad x = 6 \][/tex]

5. Step 5: Substitute the [tex]\(x\)[/tex]-values back into either original equation to find the corresponding [tex]\(y\)[/tex]-values. We can use the linear equation [tex]\(y = 2x - 7\)[/tex] because it is simpler:

For [tex]\(x = 2\)[/tex]:

[tex]\[ y = 2(2) - 7 = 4 - 7 = -3 \][/tex]

For [tex]\(x = 6\)[/tex]:

[tex]\[ y = 2(6) - 7 = 12 - 7 = 5 \][/tex]

6. Step 6: Write the solutions as ordered pairs and sort by the [tex]\(x\)[/tex]-values:

[tex]\[ (2, -3) \quad \text{and} \quad (6, 5) \][/tex]

Thus, the solution to the system of equations is:

[tex]\[ ([2, 6], [-3, 5]) \][/tex]