Q. 8) Solve the following problems. (Total 6 Marks)

A) If a box of mangoes is sold for ₹ 300 with a profit of ₹ 50, what is the cost price of the box? What is the profit percentage in this transaction? (3 Marks)

[tex]\[
\begin{aligned}
\text{Cost price} &= \text{Selling price} - \text{Profit} \\
&= 300 - 50 \\
\text{Cost price} &= \square
\end{aligned}
\][/tex]

Cost price = [tex]\(\square\)[/tex]

[tex]\[
\text{Profit percent} = \frac{\text{Profit}}{\text{Cost price}} \times 100 = 15\%
\][/tex]



Answer :

Certainly! Let's solve the given problem step-by-step.

First, we are given the selling price and the profit. We need to find the cost price and the profit percent.

### Finding the Cost Price:
Given:
- Selling Price [tex]\((\text{SP}) = ₹300\)[/tex]
- Profit [tex]\((\text{Profit}) = ₹50\)[/tex]

The formula for calculating the cost price (CP) is:
[tex]\[ \text{Cost Price} = \text{Selling Price} - \text{Profit} \][/tex]

Substituting the given values:
[tex]\[ \text{Cost Price} = ₹300 - ₹50 = ₹250 \][/tex]

So:
[tex]\[ \text{Cost Price} = ₹250 \][/tex]

### Finding the Profit Percent:
The formula for calculating the profit percent is:
[tex]\[ \text{Profit Percent} = \left( \frac{\text{Profit}}{\text{Cost Price}} \right) \times 100 \][/tex]

Substituting the values of profit and cost price:
[tex]\[ \text{Profit Percent} = \left( \frac{₹50}{₹250} \right) \times 100 \][/tex]

Simplifying the fraction:
[tex]\[ \text{Profit Percent} = \left( \frac{50}{250} \right) \times 100 = 0.2 \times 100 = 20\% \][/tex]

Therefore:
[tex]\[ \text{Profit Percent} = 20\% \][/tex]

### Final Solution:

[tex]\[ \begin{aligned} \text{Cost price} & = \text{Selling price} - \text{Profit} \\ & = ₹300 - ₹50 \\ & = ₹250 \end{aligned} \][/tex]

So the cost price of the box is [tex]\(₹250\)[/tex].

[tex]\[ \text{Profit percent} = \left( \frac{\text{Profit}}{\text{Cost price}} \right) \times 100 = \left( \frac{₹50}{₹250} \right) \times 100 = 20\% \][/tex]

Thus, the profit percent made in this transaction is 20%.