Use the equation [tex]d = \frac{m}{v}[/tex], where [tex]d[/tex] is density, [tex]m[/tex] is mass, and [tex]v[/tex] is volume.

If a rock has a density of [tex]2 \, \text{g/cm}^3[/tex] and a volume of [tex]8 \, \text{cm}^3[/tex], what is its mass?

A. 4 g
B. 128 g
C. 0.25 g
D. 16 g



Answer :

To find the mass of the rock, we will use the given formula for density:
[tex]\[ d = \frac{m}{v} \][/tex]
where
- [tex]\( d \)[/tex] is the density,
- [tex]\( m \)[/tex] is the mass, and
- [tex]\( v \)[/tex] is the volume.

We are given:
- [tex]\( d = 2 \, \text{g/cm}^3 \)[/tex]
- [tex]\( v = 8 \, \text{cm}^3 \)[/tex]

We need to find the mass [tex]\( m \)[/tex]. Rearranging the formula to solve for [tex]\( m \)[/tex], we get:
[tex]\[ m = d \times v \][/tex]

Substituting the given values into the equation:
[tex]\[ m = 2 \, \text{g/cm}^3 \times 8 \, \text{cm}^3 \][/tex]

Performing the multiplication:
[tex]\[ m = 16 \, \text{g} \][/tex]

So, the mass of the rock is [tex]\( 16 \, \text{g} \)[/tex].

Therefore, the correct answer is:
D. 16 g