Answer :
To find the mass of the rock, we will use the given formula for density:
[tex]\[ d = \frac{m}{v} \][/tex]
where
- [tex]\( d \)[/tex] is the density,
- [tex]\( m \)[/tex] is the mass, and
- [tex]\( v \)[/tex] is the volume.
We are given:
- [tex]\( d = 2 \, \text{g/cm}^3 \)[/tex]
- [tex]\( v = 8 \, \text{cm}^3 \)[/tex]
We need to find the mass [tex]\( m \)[/tex]. Rearranging the formula to solve for [tex]\( m \)[/tex], we get:
[tex]\[ m = d \times v \][/tex]
Substituting the given values into the equation:
[tex]\[ m = 2 \, \text{g/cm}^3 \times 8 \, \text{cm}^3 \][/tex]
Performing the multiplication:
[tex]\[ m = 16 \, \text{g} \][/tex]
So, the mass of the rock is [tex]\( 16 \, \text{g} \)[/tex].
Therefore, the correct answer is:
D. 16 g
[tex]\[ d = \frac{m}{v} \][/tex]
where
- [tex]\( d \)[/tex] is the density,
- [tex]\( m \)[/tex] is the mass, and
- [tex]\( v \)[/tex] is the volume.
We are given:
- [tex]\( d = 2 \, \text{g/cm}^3 \)[/tex]
- [tex]\( v = 8 \, \text{cm}^3 \)[/tex]
We need to find the mass [tex]\( m \)[/tex]. Rearranging the formula to solve for [tex]\( m \)[/tex], we get:
[tex]\[ m = d \times v \][/tex]
Substituting the given values into the equation:
[tex]\[ m = 2 \, \text{g/cm}^3 \times 8 \, \text{cm}^3 \][/tex]
Performing the multiplication:
[tex]\[ m = 16 \, \text{g} \][/tex]
So, the mass of the rock is [tex]\( 16 \, \text{g} \)[/tex].
Therefore, the correct answer is:
D. 16 g