Continue the table to determine how many hours it will take the bacterial count to reach 2,048.

\begin{tabular}{|c|c|}
\hline
Time (hours), [tex]$x$[/tex] & Bacterial Count \\
\hline
1 & [tex]$2^1=2$[/tex] \\
\hline
2 & [tex]$2^2=4$[/tex] \\
\hline
3 & [tex]$2^3=8$[/tex] \\
\hline
4 & [tex]$2^4=16$[/tex] \\
\hline
5 & [tex]$2^5=32$[/tex] \\
\hline
\end{tabular}

The bacterial count will reach 2,048 after [tex]$\square$[/tex] hours.

Type the correct answer in the box. Use numerals instead of words.



Answer :

To determine how many hours it will take for the bacterial count to reach 2,048, let's continue the table provided.

From the table:

[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hours), } x & \text{Bacterial Count} \\ \hline 1 & 2^1 = 2 \\ \hline 2 & 2^2 = 4 \\ \hline 3 & 2^3 = 8 \\ \hline 4 & 2^4 = 16 \\ \hline 5 & 2^5 = 32 \\ \hline \end{array} \][/tex]

We need to continue the table until we reach a bacterial count of 2,048:

[tex]\[ \begin{array}{|c|c|} \hline 6 & 2^6 = 64 \\ \hline 7 & 2^7 = 128 \\ \hline 8 & 2^8 = 256 \\ \hline 9 & 2^9 = 512 \\ \hline 10 & 2^{10} = 1024 \\ \hline 11 & 2^{11} = 2048 \\ \hline \end{array} \][/tex]

Therefore, the bacterial count will reach 2,048 after [tex]\( \boxed{11} \)[/tex] hours.