Answer :
To find the acceleration of an object using the formula [tex]\( F = ma \)[/tex], we can rearrange the equation to solve for [tex]\( a \)[/tex]. The formula becomes:
[tex]\[ a = \frac{F}{m} \][/tex]
Given:
- The force [tex]\( F \)[/tex] is 7.92 newtons
- The mass [tex]\( m \)[/tex] is 3.6 kilograms
We substitute these values into the equation:
[tex]\[ a = \frac{7.92 \text{ N}}{3.6 \text{ kg}} \][/tex]
Dividing the values, we get the acceleration:
[tex]\[ a = 2.1999999999999997 \text{ m/s}^2 \][/tex]
Now, we need to express this answer to the nearest tenth. The number 2.1999999999999997 rounds to 2.2 when rounded to the nearest tenth.
Therefore, the acceleration of the object is:
[tex]\[ \boxed{2.2 \, \text{m/s}^2} \][/tex]
[tex]\[ a = \frac{F}{m} \][/tex]
Given:
- The force [tex]\( F \)[/tex] is 7.92 newtons
- The mass [tex]\( m \)[/tex] is 3.6 kilograms
We substitute these values into the equation:
[tex]\[ a = \frac{7.92 \text{ N}}{3.6 \text{ kg}} \][/tex]
Dividing the values, we get the acceleration:
[tex]\[ a = 2.1999999999999997 \text{ m/s}^2 \][/tex]
Now, we need to express this answer to the nearest tenth. The number 2.1999999999999997 rounds to 2.2 when rounded to the nearest tenth.
Therefore, the acceleration of the object is:
[tex]\[ \boxed{2.2 \, \text{m/s}^2} \][/tex]