Classify each system of equations as having a single solution, no solution, or infinite solutions.

[tex]\[
\begin{array}{l}
y = 5 - 2x \\
x = 26 - 3y \\
5x + 4y = 6 \\
x + 2y = 3 \\
4x + 2y = 10 \\
2x + 6y = 22 \\
10x - 2y = 7 \\
4x + 8y = 15 \\
\end{array}
\][/tex]

[tex]\[
\begin{aligned}
3x + 4y & = 17 \\
-6x & = 10y - 39
\end{aligned}
\][/tex]

[tex]\[
x + 5y = 24
\][/tex]

[tex]\[
5x = 12 - y
\][/tex]

\begin{tabular}{|l|l|l|}
\hline
Single Solution & No Solution & Infinite Solutions \\
\hline
& & \\
& & \\
& & \\
\hline
\end{tabular}



Answer :

Certainly! To classify these systems of equations, we need to determine whether each pair has a single solution, no solution, or infinite solutions. Let’s go through each pair step by step:

### Pair 1:
[tex]\[ \begin{cases} y = 5 - 2x \\ x = 26 - 3y \end{cases} \][/tex]

This system has infinite solutions.

### Pair 2:
[tex]\[ \begin{cases} 5x + 4y = 6 \\ x + 2y = 3 \end{cases} \][/tex]

This system also has infinite solutions.

### Pair 3:
[tex]\[ \begin{cases} 4x + 2y = 10 \\ 2x + 6y = 22 \end{cases} \][/tex]

This system has infinite solutions as well.

### Pair 4:
[tex]\[ \begin{cases} 10x - 2y = 7 \\ 4x + 8y = 15 \end{cases} \][/tex]

This system also has infinite solutions.

### Pair 5:
[tex]\[ \begin{cases} 3x + 4y = 17 \\ -6x = 10y - 39 \end{cases} \][/tex]

Again, this system has infinite solutions.

### Pair 6:
[tex]\[ \begin{cases} x + 5y = 24 \\ 5x = 12 - y \end{cases} \][/tex]

This system too has infinite solutions.

The classification table based on the above analysis is:

[tex]\[ \begin{array}{|l|l|l|} \hline \text{Single Solution} & \text{No Solution} & \text{Infinite Solutions} \\ \hline & & \\ \hline & & \\ \hline & & \inf \\ \hline & & \inf \\ \hline & & \inf \\ \hline & & \inf \\ \hline & & \inf \\ \hline & & \inf \\ \hline \end{array} \][/tex]