Answer :

Let's solve the given expression step-by-step.

The expression we need to evaluate is:

[tex]\[ -3|15 - s| + 2s^3 \][/tex]

and we are given [tex]\( s = -3 \)[/tex].

First, let's evaluate the absolute value term [tex]\(|15 - s|\)[/tex]:

[tex]\[ |15 - (-3)| = |15 + 3| = |18| = 18 \][/tex]

Next, we substitute this value back into the expression:

[tex]\[ -3 \times 18 + 2s^3 \][/tex]

Now, let's evaluate [tex]\( 2s^3 \)[/tex]:

[tex]\[ 2(-3)^3 = 2 \times (-27) = -54 \][/tex]

Then, substituting these values into the expression, we get:

[tex]\[ -3 \times 18 + (-54) \][/tex]

Calculating [tex]\(-3 \times 18\)[/tex]:

[tex]\[ -3 \times 18 = -54 \][/tex]

So now we have:

[tex]\[ -54 + (-54) = -54 - 54 = -108 \][/tex]

Therefore, the value of the expression [tex]\( -3|15-s| + 2s^3 \)[/tex] when [tex]\( s = -3 \)[/tex] is [tex]\(-108\)[/tex].

So, the correct answer is:

[tex]\[ \boxed{-108} \][/tex]