Answer :
Let's solve the given expression step-by-step.
The expression we need to evaluate is:
[tex]\[ -3|15 - s| + 2s^3 \][/tex]
and we are given [tex]\( s = -3 \)[/tex].
First, let's evaluate the absolute value term [tex]\(|15 - s|\)[/tex]:
[tex]\[ |15 - (-3)| = |15 + 3| = |18| = 18 \][/tex]
Next, we substitute this value back into the expression:
[tex]\[ -3 \times 18 + 2s^3 \][/tex]
Now, let's evaluate [tex]\( 2s^3 \)[/tex]:
[tex]\[ 2(-3)^3 = 2 \times (-27) = -54 \][/tex]
Then, substituting these values into the expression, we get:
[tex]\[ -3 \times 18 + (-54) \][/tex]
Calculating [tex]\(-3 \times 18\)[/tex]:
[tex]\[ -3 \times 18 = -54 \][/tex]
So now we have:
[tex]\[ -54 + (-54) = -54 - 54 = -108 \][/tex]
Therefore, the value of the expression [tex]\( -3|15-s| + 2s^3 \)[/tex] when [tex]\( s = -3 \)[/tex] is [tex]\(-108\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{-108} \][/tex]
The expression we need to evaluate is:
[tex]\[ -3|15 - s| + 2s^3 \][/tex]
and we are given [tex]\( s = -3 \)[/tex].
First, let's evaluate the absolute value term [tex]\(|15 - s|\)[/tex]:
[tex]\[ |15 - (-3)| = |15 + 3| = |18| = 18 \][/tex]
Next, we substitute this value back into the expression:
[tex]\[ -3 \times 18 + 2s^3 \][/tex]
Now, let's evaluate [tex]\( 2s^3 \)[/tex]:
[tex]\[ 2(-3)^3 = 2 \times (-27) = -54 \][/tex]
Then, substituting these values into the expression, we get:
[tex]\[ -3 \times 18 + (-54) \][/tex]
Calculating [tex]\(-3 \times 18\)[/tex]:
[tex]\[ -3 \times 18 = -54 \][/tex]
So now we have:
[tex]\[ -54 + (-54) = -54 - 54 = -108 \][/tex]
Therefore, the value of the expression [tex]\( -3|15-s| + 2s^3 \)[/tex] when [tex]\( s = -3 \)[/tex] is [tex]\(-108\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{-108} \][/tex]