Answer :
Certainly! Let's balance the chemical equation step by step:
The unbalanced chemical equation is:
[tex]\[ H_2 + O_2 \rightarrow H_2O \][/tex]
### Step 1: Count the number of atoms for each element on both sides.
- Reactants:
- Hydrogen ([tex]\(H\)[/tex]): 2 atoms (from [tex]\(H_2\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from [tex]\(O_2\)[/tex])
- Products:
- Hydrogen ([tex]\(H\)[/tex]): 2 atoms (from [tex]\(H_2O\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 1 atom (from [tex]\(H_2O\)[/tex])
### Step 2: Balance the hydrogen atoms.
To balance the hydrogen atoms, we need to have the same number of hydrogen atoms on both sides. Currently, we have 2 hydrogen atoms in the reactants and 2 hydrogen atoms in the products. Thus, the hydrogen atoms are already balanced.
### Step 3: Balance the oxygen atoms.
To balance the oxygen atoms, we need to have the same number of oxygen atoms on both sides. Currently, we have 2 oxygen atoms in the reactants and 1 oxygen atom in the products.
Since there's only one [tex]\(O\)[/tex] in [tex]\(H_2O\)[/tex], we can try placing a coefficient of 2 in front of [tex]\(H_2O\)[/tex]:
[tex]\[ H_2 + O_2 \rightarrow 2 H_2O \][/tex]
### Step 4: Recount the number of atoms after adjusting coefficients.
- Reactants:
- Hydrogen ([tex]\(H\)[/tex]): 2 atoms (from [tex]\(H_2\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from [tex]\(O_2\)[/tex])
- Products:
- Hydrogen ([tex]\(H\)[/tex]): 4 atoms (from 2 [tex]\(H_2O\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from 2 [tex]\(H_2O\)[/tex])
### Step 5: Balance the hydrogen atoms again.
We now see that we have 4 hydrogen atoms on the product side but only 2 hydrogen atoms on the reactant side. To balance the hydrogen atoms, we need to place a coefficient of 2 in front of [tex]\(H_2\)[/tex]:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
### Step 6: Final check.
- Reactants:
- Hydrogen ([tex]\(H\)[/tex]): 4 atoms (from 2 [tex]\(H_2\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from [tex]\(O_2\)[/tex])
- Products:
- Hydrogen ([tex]\(H\)[/tex]): 4 atoms (from 2 [tex]\(H_2O\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from 2 [tex]\(H_2O\)[/tex])
Now the equation is balanced on both sides, with 4 hydrogen atoms and 2 oxygen atoms.
Therefore, the coefficients required to balance the equation are:
- [tex]\(2\)[/tex] in front of [tex]\(H_2\)[/tex]
- [tex]\(2\)[/tex] in front of [tex]\(H_2O\)[/tex]
So, the balanced chemical equation is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
Hence, the coefficients to be placed in front of [tex]\(H_2\)[/tex] and [tex]\(H_2O\)[/tex] are both:
[tex]\[ \boxed{2} \][/tex]
The unbalanced chemical equation is:
[tex]\[ H_2 + O_2 \rightarrow H_2O \][/tex]
### Step 1: Count the number of atoms for each element on both sides.
- Reactants:
- Hydrogen ([tex]\(H\)[/tex]): 2 atoms (from [tex]\(H_2\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from [tex]\(O_2\)[/tex])
- Products:
- Hydrogen ([tex]\(H\)[/tex]): 2 atoms (from [tex]\(H_2O\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 1 atom (from [tex]\(H_2O\)[/tex])
### Step 2: Balance the hydrogen atoms.
To balance the hydrogen atoms, we need to have the same number of hydrogen atoms on both sides. Currently, we have 2 hydrogen atoms in the reactants and 2 hydrogen atoms in the products. Thus, the hydrogen atoms are already balanced.
### Step 3: Balance the oxygen atoms.
To balance the oxygen atoms, we need to have the same number of oxygen atoms on both sides. Currently, we have 2 oxygen atoms in the reactants and 1 oxygen atom in the products.
Since there's only one [tex]\(O\)[/tex] in [tex]\(H_2O\)[/tex], we can try placing a coefficient of 2 in front of [tex]\(H_2O\)[/tex]:
[tex]\[ H_2 + O_2 \rightarrow 2 H_2O \][/tex]
### Step 4: Recount the number of atoms after adjusting coefficients.
- Reactants:
- Hydrogen ([tex]\(H\)[/tex]): 2 atoms (from [tex]\(H_2\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from [tex]\(O_2\)[/tex])
- Products:
- Hydrogen ([tex]\(H\)[/tex]): 4 atoms (from 2 [tex]\(H_2O\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from 2 [tex]\(H_2O\)[/tex])
### Step 5: Balance the hydrogen atoms again.
We now see that we have 4 hydrogen atoms on the product side but only 2 hydrogen atoms on the reactant side. To balance the hydrogen atoms, we need to place a coefficient of 2 in front of [tex]\(H_2\)[/tex]:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
### Step 6: Final check.
- Reactants:
- Hydrogen ([tex]\(H\)[/tex]): 4 atoms (from 2 [tex]\(H_2\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from [tex]\(O_2\)[/tex])
- Products:
- Hydrogen ([tex]\(H\)[/tex]): 4 atoms (from 2 [tex]\(H_2O\)[/tex])
- Oxygen ([tex]\(O\)[/tex]): 2 atoms (from 2 [tex]\(H_2O\)[/tex])
Now the equation is balanced on both sides, with 4 hydrogen atoms and 2 oxygen atoms.
Therefore, the coefficients required to balance the equation are:
- [tex]\(2\)[/tex] in front of [tex]\(H_2\)[/tex]
- [tex]\(2\)[/tex] in front of [tex]\(H_2O\)[/tex]
So, the balanced chemical equation is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
Hence, the coefficients to be placed in front of [tex]\(H_2\)[/tex] and [tex]\(H_2O\)[/tex] are both:
[tex]\[ \boxed{2} \][/tex]