Find using the distributive property:

(i) [tex]\[\left\{\frac{1}{5} \times \left(\frac{-3}{12}\right)\right\} + \left\{\frac{7}{5} \times \frac{5}{12}\right\}\][/tex]

(ii) [tex]\[\left\{\frac{9}{16} \times \frac{4}{12}\right\} + \left\{\frac{9}{16} \times \frac{-3}{9}\right\}\][/tex]



Answer :

Certainly! Let's solve each expression step-by-step using the distributive property.

### (i) [tex]\(\left\{\frac{1}{5} \times\left(\frac{-3}{12}\right)\right\}+\left\{\frac{7}{5} \times \frac{5}{12}\right\}\)[/tex]

1. First term:
[tex]\[ \frac{1}{5} \times \left(\frac{-3}{12}\right) \][/tex]
Multiply the fractions:
[tex]\[ \frac{1 \times (-3)}{5 \times 12} = \frac{-3}{60} = -\frac{1}{20} = -0.05 \][/tex]
So, the first term is [tex]\(-0.05\)[/tex].

2. Second term:
[tex]\[ \frac{7}{5} \times \frac{5}{12} \][/tex]
Multiply the fractions:
[tex]\[ \frac{7 \times 5}{5 \times 12} = \frac{35}{60} = \frac{7}{12} \approx 0.5833333333333334 \][/tex]
So, the second term is approximately [tex]\(0.5833333333333334\)[/tex].

3. Sum the two terms:
[tex]\[ -0.05 + 0.5833333333333334 \approx 0.5333333333333333 \][/tex]
Therefore, the result of the first expression is [tex]\(0.5333333333333333\)[/tex].

### (ii) [tex]\(\left\{\frac{9}{16} \times \frac{4}{12}\right\}+\left\{\frac{9}{16} \times \frac{-3}{9}\right\}\)[/tex]

1. First term:
[tex]\[ \frac{9}{16} \times \frac{4}{12} \][/tex]
Multiply the fractions:
[tex]\[ \frac{9 \times 4}{16 \times 12} = \frac{36}{192} = \frac{3}{16} = 0.1875 \][/tex]
So, the first term is [tex]\(0.1875\)[/tex].

2. Second term:
[tex]\[ \frac{9}{16} \times \frac{-3}{9} \][/tex]
Multiply the fractions:
[tex]\[ \frac{9 \times (-3)}{16 \times 9} = \frac{-27}{144} = \frac{-3}{16} = -0.1875 \][/tex]
So, the second term is [tex]\(-0.1875\)[/tex].

3. Sum the two terms:
[tex]\[ 0.1875 + (-0.1875) = 0 \][/tex]
Therefore, the result of the second expression is [tex]\(0.0\)[/tex].

### Summary
- The result of [tex]\(\left\{\frac{1}{5} \times\left(\frac{-3}{12}\right)\right\}+\left\{\frac{7}{5} \times \frac{5}{12}\right\}\)[/tex] is approximately [tex]\(0.5333333333333333\)[/tex].
- The result of [tex]\(\left\{\frac{9}{16} \times \frac{4}{12}\right\}+\left\{\frac{9}{16} \times \frac{-3}{9}\right\}\)[/tex] is [tex]\(0.0\)[/tex].