If a circle has a diameter of 16 feet, which expression gives its area in square feet?

A. [tex]8^2 \cdot \pi[/tex]

B. [tex]16 \cdot \pi[/tex]

C. [tex]16^2 \cdot \pi[/tex]

D. [tex]8 \cdot \pi[/tex]



Answer :

To solve for the area of a circle with a given diameter of 16 feet, we need to follow these steps:

1. Determine the radius of the circle:
The radius is half of the diameter.
Since the diameter is 16 feet, the radius [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{16}{2} = 8 \text{ feet} \][/tex]

2. Use the formula for the area of a circle:
The area [tex]\( A \)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the value of the radius [tex]\( r = 8 \)[/tex] feet, we get:
[tex]\[ A = \pi (8)^2 \][/tex]

3. Simplify the expression:
Calculating [tex]\( 8^2 \)[/tex]:
[tex]\[ 8^2 = 64 \][/tex]
Thus, the area is:
[tex]\[ A = 64 \pi \, \text{square feet} \][/tex]

4. Match this result with the given options to find the correct expression for the area:
- Option A: [tex]\( 8^2 \cdot \pi \)[/tex]
- Option B: [tex]\( 16 \cdot \pi \)[/tex]
- Option C: [tex]\( 16^2 \cdot \pi \)[/tex]
- Option D: [tex]\( 8 \cdot \pi \)[/tex]

We see that Option A matches our expression [tex]\( 8^2 \cdot \pi \)[/tex], which simplifies to [tex]\( 64 \pi \)[/tex].

Therefore, the expression that gives the area of the circle is:
[tex]\[ \boxed{8^2 \cdot \pi} \][/tex]