Answer :
Certainly! Let's break down the solution step-by-step to determine the external pressure on the upper surface of the liquid.
1. Gathering the Given Data:
- The area of the piston [tex]\( A = 1 \, \text{m}^2 \)[/tex]
- The load or mass on the piston [tex]\( m = 350 \, \text{kg} \)[/tex]
2. Acceleration Due to Gravity:
- The standard value for gravitational acceleration [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
3. Calculating the Force Exerted by the Load:
- Using Newton's second law, we calculate the force:
[tex]\[ F = m \cdot g \][/tex]
- Plugging in the values:
[tex]\[ F = 350 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 3430 \, \text{N} \][/tex]
4. Calculating the Pressure:
- Pressure [tex]\( P \)[/tex] is defined as force per unit area. Thus,
[tex]\[ P = \frac{F}{A} \][/tex]
- With the given area,
[tex]\[ P = \frac{3430 \, \text{N}}{1 \, \text{m}^2} = 3430 \, \text{Pa} \][/tex]
5. Converting Pascals to Kilopascals:
- [tex]\( 1 \, \text{kPa} = 1000 \, \text{Pa} \)[/tex]
- Therefore, to convert the pressure calculated in Pascals to kilopascals:
[tex]\[ P_{\text{kPa}} = \frac{3430 \, \text{Pa}}{1000} = 3.43 \, \text{kPa} \][/tex]
Putting all these steps together, the pressure on the upper surface of the liquid is [tex]\( 3.43 \, \text{kPa} \)[/tex].
Therefore, the best answer is:
D. 3.43 kPa
1. Gathering the Given Data:
- The area of the piston [tex]\( A = 1 \, \text{m}^2 \)[/tex]
- The load or mass on the piston [tex]\( m = 350 \, \text{kg} \)[/tex]
2. Acceleration Due to Gravity:
- The standard value for gravitational acceleration [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
3. Calculating the Force Exerted by the Load:
- Using Newton's second law, we calculate the force:
[tex]\[ F = m \cdot g \][/tex]
- Plugging in the values:
[tex]\[ F = 350 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 3430 \, \text{N} \][/tex]
4. Calculating the Pressure:
- Pressure [tex]\( P \)[/tex] is defined as force per unit area. Thus,
[tex]\[ P = \frac{F}{A} \][/tex]
- With the given area,
[tex]\[ P = \frac{3430 \, \text{N}}{1 \, \text{m}^2} = 3430 \, \text{Pa} \][/tex]
5. Converting Pascals to Kilopascals:
- [tex]\( 1 \, \text{kPa} = 1000 \, \text{Pa} \)[/tex]
- Therefore, to convert the pressure calculated in Pascals to kilopascals:
[tex]\[ P_{\text{kPa}} = \frac{3430 \, \text{Pa}}{1000} = 3.43 \, \text{kPa} \][/tex]
Putting all these steps together, the pressure on the upper surface of the liquid is [tex]\( 3.43 \, \text{kPa} \)[/tex].
Therefore, the best answer is:
D. 3.43 kPa