Answer :
Let's solve the problem step by step.
We are given two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] which represent the emissions of [tex]\( \text{SO}_2 \)[/tex] in millions of tons from burning coal and oil respectively during different years. We need to evaluate [tex]\( (f + g)(1970) \)[/tex].
Here's how we do it:
1. Identify the values of [tex]\( f(1970) \)[/tex] and [tex]\( g(1970) \)[/tex] from the table:
- From the table, for the year 1970:
[tex]\[ f(1970) = 38.2 \][/tex]
[tex]\[ g(1970) = 21.8 \][/tex]
2. Add these values together to find [tex]\( (f + g)(1970) \)[/tex]:
- Sum the emissions from burning coal and oil for the year 1970.
[tex]\[ (f + g)(1970) = f(1970) + g(1970) \][/tex]
[tex]\[ (f + g)(1970) = 38.2 + 21.8 \][/tex]
3. Compute the result:
[tex]\[ 38.2 + 21.8 = 60.0 \][/tex]
So, the value of [tex]\( (f + g)(1970) \)[/tex] is:
[tex]\[ (f + g)(1970) = 60.0 \][/tex]
Thus, the solution to the problem is [tex]\( \boxed{60.0} \)[/tex].
We are given two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] which represent the emissions of [tex]\( \text{SO}_2 \)[/tex] in millions of tons from burning coal and oil respectively during different years. We need to evaluate [tex]\( (f + g)(1970) \)[/tex].
Here's how we do it:
1. Identify the values of [tex]\( f(1970) \)[/tex] and [tex]\( g(1970) \)[/tex] from the table:
- From the table, for the year 1970:
[tex]\[ f(1970) = 38.2 \][/tex]
[tex]\[ g(1970) = 21.8 \][/tex]
2. Add these values together to find [tex]\( (f + g)(1970) \)[/tex]:
- Sum the emissions from burning coal and oil for the year 1970.
[tex]\[ (f + g)(1970) = f(1970) + g(1970) \][/tex]
[tex]\[ (f + g)(1970) = 38.2 + 21.8 \][/tex]
3. Compute the result:
[tex]\[ 38.2 + 21.8 = 60.0 \][/tex]
So, the value of [tex]\( (f + g)(1970) \)[/tex] is:
[tex]\[ (f + g)(1970) = 60.0 \][/tex]
Thus, the solution to the problem is [tex]\( \boxed{60.0} \)[/tex].