Given the recursive formula shown, what are the first 4 terms of the sequence?

[tex]\[
f(n)=\left\{\begin{array}{l}
f(1)=6 \\
f(n)=f(n-1)+7 \text{ if } n\ \textgreater \ 1
\end{array}\right.
\][/tex]

A. [tex]\( 6, 13, 20, 27 \)[/tex]



Answer :

Let's start with the given recursive formula for the sequence:

[tex]\[ f(n) = \begin{cases} f(1) = 6 \\ f(n) = f(n-1) + 7 \text{ if } n > 1 \end{cases} \][/tex]

To find the first 4 terms of the sequence, we will calculate each term step-by-step:

1. First term [tex]\( f(1) \)[/tex]:
[tex]\[ f(1) = 6 \][/tex]
So, the first term [tex]\( f(1) \)[/tex] is 6.

2. Second term [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = f(1) + 7 = 6 + 7 = 13 \][/tex]
So, the second term [tex]\( f(2) \)[/tex] is 13.

3. Third term [tex]\( f(3) \)[/tex]:
[tex]\[ f(3) = f(2) + 7 = 13 + 7 = 20 \][/tex]
So, the third term [tex]\( f(3) \)[/tex] is 20.

4. Fourth term [tex]\( f(4) \)[/tex]:
[tex]\[ f(4) = f(3) + 7 = 20 + 7 = 27 \][/tex]
So, the fourth term [tex]\( f(4) \)[/tex] is 27.

Therefore, the first 4 terms of the sequence are: [tex]\( 6, 13, 20, 27 \)[/tex].