Simplify the following expression. Leave the answer in terms of exponents.

[tex]\[
\left(\frac{5}{4} x^6 y^2\right)\left(3 x^3 y\right)=
\][/tex]

[tex]\[\square\][/tex]



Answer :

To simplify the expression [tex]\(\left(\frac{5}{4} x^6 y^2\right)\left(3 x^3 y\right)\)[/tex], we can follow these steps:

1. Separate and multiply the coefficients:
- Take the coefficient from the first term, which is [tex]\(\frac{5}{4}\)[/tex].
- Take the coefficient from the second term, which is [tex]\(3\)[/tex].
- Multiply these coefficients together:

[tex]\[ \frac{5}{4} \times 3 = \frac{5 \times 3}{4} = \frac{15}{4} = 3.75 \][/tex]

2. Combine the exponents for the variable [tex]\(x\)[/tex]:
- The exponent of [tex]\(x\)[/tex] in the first term is [tex]\(6\)[/tex].
- The exponent of [tex]\(x\)[/tex] in the second term is [tex]\(3\)[/tex].
- When multiplying terms with the same base, add the exponents:

[tex]\[ x^6 \times x^3 = x^{6+3} = x^9 \][/tex]

3. Combine the exponents for the variable [tex]\(y\)[/tex]:
- The exponent of [tex]\(y\)[/tex] in the first term is [tex]\(2\)[/tex].
- The exponent of [tex]\(y\)[/tex] in the second term is [tex]\(1\)[/tex].
- When multiplying terms with the same base, add the exponents:

[tex]\[ y^2 \times y = y^{2+1} = y^3 \][/tex]

4. Form the simplified expression:
- Combine the simplified coefficient with the simplified variable expressions:

[tex]\[ 3.75 \cdot x^9 \cdot y^3 \][/tex]

Thus, the simplified expression is:

[tex]\[ \left(\frac{5}{4} x^6 y^2\right)\left(3 x^3 y\right) = 3.75 \cdot x^9 \cdot y^3 \][/tex]