Two terms are given below.
[tex]\[ (2x + 3y)^{2m} \text{ and } (2x + 3y)^{2n} \][/tex]

(a) Write the value of [tex]\( x^{\circ} \)[/tex].

(b) If [tex]\( m + n = 0 \)[/tex], prove that:
[tex]\[ (2x + 3y)^{2m} \times (2x + 3y)^{2n} = 1 \][/tex]



Answer :

Let's address each part of the problem step-by-step.

Part (a): Value of [tex]\( x^0 \)[/tex]

Recall that any non-zero number raised to the power of zero is equal to 1. This is a fundamental property of exponents.

So, for any [tex]\( x \neq 0 \)[/tex]:
[tex]\[ x^0 = 1 \][/tex]

Thus, the value of [tex]\( x^0 \)[/tex] is [tex]\( 1 \)[/tex].

Part (b): Proof that [tex]\( (2x + 3y)^{2m} \times (2x + 3y)^{2n} = 1 \)[/tex] given [tex]\( m + n = 0 \)[/tex]

We are given:
[tex]\[ m + n = 0 \][/tex]

We need to prove:
[tex]\[ (2x + 3y)^{2m} \times (2x + 3y)^{2n} = 1 \][/tex]

First, let's look at the properties of exponents. One useful property is:
[tex]\[ a^b \times a^c = a^{b+c} \][/tex]

Applying this property to our terms:
[tex]\[ (2x + 3y)^{2m} \times (2x + 3y)^{2n} = (2x + 3y)^{2m + 2n} \][/tex]

We know that:
[tex]\[ 2m + 2n = 2(m + n) \][/tex]

Since [tex]\( m + n = 0 \)[/tex], we substitute this in:
[tex]\[ 2(m + n) = 2(0) = 0 \][/tex]

Thus, the exponent becomes:
[tex]\[ (2x + 3y)^{2m + 2n} = (2x + 3y)^0 \][/tex]

And since any number (except zero) raised to the power of zero is 1, we have:
[tex]\[ (2x + 3y)^0 = 1 \][/tex]

Therefore:
[tex]\[ (2x + 3y)^{2m} \times (2x + 3y)^{2n} = 1 \][/tex]

Conclusion:

(a) The value of [tex]\( x^0 \)[/tex] is [tex]\( 1 \)[/tex].

(b) If [tex]\( m + n = 0 \)[/tex], then:
[tex]\[ (2x + 3y)^{2m} \times (2x + 3y)^{2n} = 1 \][/tex]

We have shown this using the properties of exponents and the given condition.

Other Questions