Certainly! Let's solve the given expression step-by-step:
We start with:
[tex]\[ 3m(p-q) - 3(-q + p) \][/tex]
First, recognize that [tex]\(-q + p\)[/tex] is the same as [tex]\(p - q\)[/tex], so we can rewrite the expression as:
[tex]\[ 3m(p-q) - 3(p - q) \][/tex]
Next, we can factor out the common factor of [tex]\(3(p-q)\)[/tex]:
[tex]\[ 3(p-q)(m - 1) \][/tex]
Now, we distribute [tex]\(3(p-q)\)[/tex] to [tex]\(m\)[/tex] and [tex]\(-1\)[/tex]:
[tex]\[ 3m(p - q) - 3(p - q) \][/tex]
So the simplified expression remains:
[tex]\[ 3m(p - q) - 3(p - q) \][/tex]
Therefore, the final simplified form of the expression is:
[tex]\[ 3m(p - q) - 3p + 3q \][/tex]
This is a step-by-step simplification of the given expression.