Use a calculator to work out

[tex]\[
\frac{4.67 \times 10^{-5} \times 6.98 \times 10^{12}}{5.04 \times 10^3}
\][/tex]

Give your answer in standard form to 3 significant figures.



Answer :

Certainly! Let's work through this problem step by step.

### Step 1: Multiply the Numerator
First, we have to multiply the two numbers in the numerator:

[tex]\[ 4.67 \times 10^{-5} \times 6.98 \times 10^{12} \][/tex]

This involves multiplying the coefficients (4.67 and 6.98) and adding the exponents (-5 and 12) of the powers of 10:

[tex]\[ (4.67 \times 6.98) \times 10^{-5 + 12} \][/tex]

Calculating the coefficient:

[tex]\[ 4.67 \times 6.98 = 32.5966 \][/tex]

And adding the exponents:

[tex]\[ -5 + 12 = 7 \][/tex]

So, the numerator simplifies to:

[tex]\[ 32.5966 \times 10^7 \][/tex]

### Step 2: Writing the Denominator in Standard Form
The denominator is already given in standard form:

[tex]\[ 5.04 \times 10^3 \][/tex]

### Step 3: Perform the Division
Next, we divide the result of the numerator by the denominator:

[tex]\[ \frac{32.5966 \times 10^7}{5.04 \times 10^3} \][/tex]

This can be broken into dividing the coefficients and subtracting the exponents of the powers of 10:

[tex]\[ \frac{32.5966}{5.04} \times 10^{7-3} \][/tex]

Calculating the coefficient:

[tex]\[ \frac{32.5966}{5.04} = 6.4675 \][/tex]

And subtracting the exponents:

[tex]\[ 7 - 3 = 4 \][/tex]

So, the result of the division simplifies to:

[tex]\[ 6.4675 \times 10^4 \][/tex]

### Step 4: Round to 3 Significant Figures
To express the result in standard form with 3 significant figures, we round 6.4675 to 3 significant figures:

[tex]\[ 6.4675 \approx 6.47 \][/tex]

So, our final answer in standard form with 3 significant figures is:

[tex]\[ 6.47 \times 10^4 \][/tex]

### Conclusion
Thus, the value of
[tex]\[ \frac{4.67 \times 10^{-5} \times 6.98 \times 10^{12}}{5.04 \times 10^3} \][/tex]
in standard form to 3 significant figures is:

[tex]\[ 6.47 \times 10^4 \][/tex]