2. Completely factor [tex]$x^2 - x - 56$[/tex].

A. [tex]$(x - 8)(x + 7)$[/tex]
B. [tex][tex]$(x - 7)(x + 8)$[/tex][/tex]
C. [tex]$(x - 28)(x + 2)$[/tex]
D. [tex]$(x - 2)(x + 28)$[/tex]



Answer :

To factor the quadratic expression [tex]\( x^2 - x - 56 \)[/tex], follow these steps:

1. Identify the coefficients:
- The quadratic expression is [tex]\( ax^2 + bx + c \)[/tex].
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -56 \)[/tex].

2. Determine the factors of the constant term [tex]\( c \)[/tex]:
- We need to find two numbers that multiply to give [tex]\( c = -56 \)[/tex] and add to give [tex]\( b = -1 \)[/tex].

3. List the factor pairs of [tex]\( -56 \)[/tex]:
- [tex]\((-1, 56)\)[/tex]
- [tex]\((1, -56)\)[/tex]
- [tex]\((-2, 28)\)[/tex]
- [tex]\((2, -28)\)[/tex]
- [tex]\((-4, 14)\)[/tex]
- [tex]\((4, -14)\)[/tex]
- [tex]\((-7, 8)\)[/tex]
- [tex]\((7, -8)\)[/tex]

4. Find the correct pair of factors:
- We need to find a pair that adds up to [tex]\( -1 \)[/tex].
- Among them, [tex]\((7, -8)\)[/tex] satisfies this condition because [tex]\( 7 + (-8) = -1 \)[/tex].

5. Write the quadratic expression using these factors:
- The factors of [tex]\( x^2 - x - 56 \)[/tex] are [tex]\( (x + 7) \)[/tex] and [tex]\( (x - 8) \)[/tex].

6. Write out the factored form:
- The factored form of [tex]\( x^2 - x - 56 \)[/tex] is [tex]\( (x - 8)(x + 7) \)[/tex].

However, your options also need to be checked correctly. The correct factored forms given in the options are:
- [tex]\((x - 8)(x + 7)\)[/tex]
- [tex]\((x - 7)(x + 8)\)[/tex]
- [tex]\((x - 28)(x + 2)\)[/tex]
- [tex]\((x - 2)(x + 28)\)[/tex]

Our factored form is [tex]\((x - 8)(x + 7)\)[/tex]. Reviewing the options, we confirm that:

- Our factorization precisely matches the first option [tex]\((x - 8)(x + 7)\)[/tex].

So, the completely factored form of [tex]\( x^2 - x - 56 \)[/tex] is:
[tex]\[ (x - 8)(x + 7) \][/tex]

And the correct answer is:
[tex]\[ (x - 8)(x + 7) \][/tex]

Other Questions