Answer :

Alright! Let's simplify the expression [tex]\(10^{-1 / 3} \times 25^{2 / 3} \times 2^{5 / 3}\)[/tex] step by step using prime factors.

1. Factorize the components into their prime factors:

- [tex]\(10 = 2 \times 5\)[/tex]
- [tex]\(25 = 5^2\)[/tex]
- [tex]\(2\)[/tex] is already a prime number.

So the expression can be rewritten as:
[tex]\[ (2 \times 5)^{-1 / 3} \times (5^2)^{2 / 3} \times 2^{5 / 3} \][/tex]

2. Apply the exponents to the factors individually:

- For [tex]\( (2 \times 5)^{-1 / 3} \)[/tex]:
[tex]\[ (2 \times 5)^{-1 / 3} = 2^{-1 / 3} \times 5^{-1 / 3} \][/tex]

- For [tex]\( (5^2)^{2 / 3} \)[/tex]:
[tex]\[ (5^2)^{2 / 3} = 5^{4 / 3} \][/tex]

- For [tex]\( 2^{5 / 3} \)[/tex], it remains as:
[tex]\[ 2^{5 / 3} \][/tex]

Now, combine all simplified components together:
[tex]\[ 2^{-1 / 3} \times 5^{-1 / 3} \times 5^{4 / 3} \times 2^{5 / 3} \][/tex]

3. Combine like bases by adding their exponents:

- For the base [tex]\(2\)[/tex]:
[tex]\[ 2^{-1 / 3} \times 2^{5 / 3} = 2^{(-1 / 3 + 5 / 3)} \][/tex]
Simplify the exponent:
[tex]\[ 2^{(-1 / 3 + 5 / 3)} = 2^{4 / 3} \][/tex]

- For the base [tex]\(5\)[/tex]:
[tex]\[ 5^{-1 / 3} \times 5^{4 / 3} = 5^{(-1 / 3 + 4 / 3)} \][/tex]
Simplify the exponent:
[tex]\[ 5^{(-1 / 3 + 4 / 3)} = 5^{3 / 3} = 5^1 = 5 \][/tex]

4. Combine the results:

Now we have:
[tex]\[ 2^{4 / 3} \times 5 \][/tex]

5. Calculate the numerical value:

Calculate [tex]\(2^{4 / 3}\)[/tex]:
[tex]\[ 2^{4 / 3} \approx 2.5198421 \][/tex]

So,
[tex]\[ 2^{4 / 3} \times 5 \approx 2.5198421 \times 5 = 12.5992105 \][/tex]

Therefore, the simplified expression evaluates to approximately [tex]\(12.5992105\)[/tex].