Without graphing, determine if the system is independent, dependent, or inconsistent.

[tex]\[
\begin{cases}
12x + 3y = 12 \\
y = -4x + 5
\end{cases}
\][/tex]

A. independent
B. inconsistent
C. dependent



Answer :

To determine whether the system of equations is independent, dependent, or inconsistent, we can use the method of comparing the coefficients and solving for the determinants.

The system given is:
1. [tex]\( 12x + 3y = 12 \)[/tex]
2. [tex]\( y = -4x + 5 \)[/tex]

First, let's rewrite both equations in standard form:

1. [tex]\( 12x + 3y = 12 \)[/tex]
2. [tex]\( 4x + y = 5 \)[/tex] (Rewriting the second equation by moving all terms to one side)

Now we have the equations in the form of:
[tex]\[ \left\{ \begin{array}{ccccc} a_1 x & + & b_1 y & = & c_1 \\ a_2 x & + & b_2 y & = & c_2 \end{array} \right. \][/tex]
Where:
- [tex]\( a_1 = 12 \)[/tex], [tex]\( b_1 = 3 \)[/tex], [tex]\( c_1 = 12 \)[/tex]
- [tex]\( a_2 = 4 \)[/tex], [tex]\( b_2 = 1 \)[/tex], [tex]\( c_2 = 5 \)[/tex]

Next, we compute the determinant of the coefficient matrix:
[tex]\[ \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 12 & 3 \\ 4 & 1 \end{vmatrix} = (12 \cdot 1) - (3 \cdot 4) = 12 - 12 = 0 \][/tex]

Since the determinant [tex]\(\Delta\)[/tex] equals 0, the system's coefficient matrix is singular, meaning the equations are either dependent or inconsistent.

To further determine between dependent or inconsistent, we check the augmented matrix determinant:

[tex]\[ \Delta' = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = \begin{vmatrix} 12 & 12 \\ 4 & 5 \end{vmatrix} = (12 \cdot 5) - (12 \cdot 4) = 60 - 48 = 12 \][/tex]

Since the determinant of the augmented matrix [tex]\( \Delta' \)[/tex] is not equal to 0, the system has no solution, meaning it is inconsistent.

Therefore, the system of equations given is inconsistent.