Answer :
To find [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] for the function [tex]\( f(x) = 2x^2 + 1 \)[/tex], follow these steps:
1. Substitute the value of [tex]\( x \)[/tex] into the function:
[tex]\[ x = 3 \][/tex]
2. Write down the function:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]
3. Substitute [tex]\( x = 3 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(3) = 2(3^2) + 1 \][/tex]
4. Calculate the square of 3:
[tex]\[ 3^2 = 9 \][/tex]
5. Multiply the result by 2:
[tex]\[ 2 \cdot 9 = 18 \][/tex]
6. Add 1 to the result:
[tex]\[ 18 + 1 = 19 \][/tex]
Therefore, [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\( 19 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{19} \][/tex]
1. Substitute the value of [tex]\( x \)[/tex] into the function:
[tex]\[ x = 3 \][/tex]
2. Write down the function:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]
3. Substitute [tex]\( x = 3 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(3) = 2(3^2) + 1 \][/tex]
4. Calculate the square of 3:
[tex]\[ 3^2 = 9 \][/tex]
5. Multiply the result by 2:
[tex]\[ 2 \cdot 9 = 18 \][/tex]
6. Add 1 to the result:
[tex]\[ 18 + 1 = 19 \][/tex]
Therefore, [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\( 19 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{19} \][/tex]