If [tex]$f(x) = 2x^2 + 1$[/tex], what is [tex]$f(x)$[/tex] when [tex][tex]$x = 3$[/tex][/tex]?

A. 1
B. 7
C. 13
D. 19



Answer :

To find [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] for the function [tex]\( f(x) = 2x^2 + 1 \)[/tex], follow these steps:

1. Substitute the value of [tex]\( x \)[/tex] into the function:
[tex]\[ x = 3 \][/tex]

2. Write down the function:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]

3. Substitute [tex]\( x = 3 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(3) = 2(3^2) + 1 \][/tex]

4. Calculate the square of 3:
[tex]\[ 3^2 = 9 \][/tex]

5. Multiply the result by 2:
[tex]\[ 2 \cdot 9 = 18 \][/tex]

6. Add 1 to the result:
[tex]\[ 18 + 1 = 19 \][/tex]

Therefore, [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\( 19 \)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{19} \][/tex]

Other Questions