Type the correct answer in each box. Use numerals instead of words.

Consider the function

[tex]
g(x)=\left\{\begin{array}{ll}
6, & -8 \leq x\ \textless \ -2 \\
0, & -2 \leq x\ \textless \ 4 \\
-4, & 4 \leq x\ \textless \ 10
\end{array}\right.
[/tex]

What are the values of the function when [tex]\( x=-2 \)[/tex] and when [tex]\( x=4 \)[/tex]?

[tex]
\begin{array}{l}
g(-2)=0 \\
g(4)=-4
\end{array}
[/tex]



Answer :

To determine the values of the function [tex]\( g(x) \)[/tex] at specific points, we need to evaluate the function according to the defined piecewise conditions.

The piecewise function is defined as:
[tex]\[ g(x) = \left\{\begin{array}{ll} 6, & \text{if } -8 \leq x < -2 \\ 0, & \text{if } -2 \leq x < 4 \\ -4, & \text{if } 4 \leq x < 10 \end{array}\right. \][/tex]

Step-by-step:

1. Evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = -2 \)[/tex]:
- According to the piecewise function, if [tex]\(-2 \leq x < 4\)[/tex], then [tex]\( g(x) = 0 \)[/tex].
- Since [tex]\(-2\)[/tex] falls in the interval [tex]\([-2, 4)\)[/tex], we use the rule [tex]\( g(x) = 0 \)[/tex].

Therefore, [tex]\( g(-2) = 0 \)[/tex].

2. Evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
- According to the piecewise function, if [tex]\(4 \leq x < 10\)[/tex], then [tex]\( g(x) = -4 \)[/tex].
- Since [tex]\(4\)[/tex] falls in the interval [tex]\([4, 10)\)[/tex], we use the rule [tex]\( g(x) = -4 \)[/tex].

Therefore, [tex]\( g(4) = -4 \)[/tex].

So, the values of the function are:
[tex]\[ \begin{array}{l} g(-2) = 0 \\ g(4) = -4 \end{array} \][/tex]