Find the diameter of a circle whose circumference is 66 cm. Let [tex]\pi = \frac{22}{7}[/tex].

A. 14 cm
B. 21 cm
C. 35 cm
D. 31 cm



Answer :

To find the diameter of a circle given its circumference and the value of [tex]\(\pi\)[/tex], we can use the formula for the circumference of a circle:

[tex]\[ C = \pi d \][/tex]

where [tex]\( C \)[/tex] is the circumference of the circle, [tex]\( \pi \)[/tex] is pi, and [tex]\( d \)[/tex] is the diameter.

Given:
- The circumference [tex]\( C \)[/tex] is 66 cm.
- The value of [tex]\( \pi \)[/tex] is [tex]\(\frac{22}{7}\)[/tex].

We need to find the diameter [tex]\( d \)[/tex]. Rearranging the formula for the diameter, we get:

[tex]\[ d = \frac{C}{\pi} \][/tex]

Substitute the given values into the formula:

[tex]\[ d = \frac{66}{\frac{22}{7}} \][/tex]

When dividing by a fraction, it is equivalent to multiplying by its reciprocal. So we can rewrite it as:

[tex]\[ d = 66 \times \frac{7}{22} \][/tex]

Next, we simplify the fraction [tex]\(\frac{7}{22}\)[/tex]:

[tex]\[ d = 66 \times \frac{7}{22} \rightarrow d = 66 \times \frac{1}{\frac{22}{7}} \rightarrow d = 66 \times \frac{7}{22} \rightarrow d = 66 \times \frac{1}{\frac{22}{7}} \rightarrow d = 66 \times \frac{7}{22} \rightarrow d = 66 \times 0.3181 \approx 21 \text{ cm} \][/tex]



\]
Hence:

[tex]\[ d = 21 \][/tex]

Therefore, the diameter of the circle is 21 cm.

The correct answer is:

B. 21 cm