Let's simplify the expression [tex]\((m^3)^6 \div m^{18}\)[/tex] step-by-step.
1. Apply the power of a power rule: When raising a power to another power, you multiply the exponents. Thus, [tex]\((m^3)^6\)[/tex] becomes [tex]\(m^{3 \times 6} = m^{18}\)[/tex].
2. Rewrite the expression with the new exponent: The expression now becomes [tex]\(m^{18} \div m^{18}\)[/tex].
3. Apply the quotient of powers rule: When dividing like bases with exponents, you subtract the exponent in the denominator from the exponent in the numerator, [tex]\(a^m \div a^n = a^{m-n}\)[/tex]. So, [tex]\(m^{18} \div m^{18} = m^{18-18} = m^0\)[/tex].
4. Simplify [tex]\(m^0\)[/tex]: Any non-zero number raised to the power of 0 is equal to 1. Therefore, [tex]\(m^0 = 1\)[/tex].
Hence, the correct answer is:
D. 1