Select the correct answer.

Which expression is equivalent to the given expression [tex]$(-6ab)^2$[/tex]?

A. [tex]$-36a^2b^2$[/tex]
B. [tex][tex]$36a^2b^2$[/tex][/tex]
C. [tex]$-12a^2b^2$[/tex]
D. [tex]$-12ab^2$[/tex]



Answer :

To determine the expression equivalent to [tex]\((-6ab)^2\)[/tex], we will follow these steps:

1. Simplify the expression inside the parentheses:
We have [tex]\(-6ab\)[/tex] inside the parentheses.

2. Square the entire expression:
We need to square each component inside the parentheses, based on the properties of exponents. Let's expand the expression as follows:
[tex]\[ (-6ab)^2 = (-6)^2 \cdot (a)^2 \cdot (b)^2 \][/tex]

3. Calculate the square of each factor:
- Squaring [tex]\(-6\)[/tex], we get:
[tex]\[ (-6)^2 = 36 \][/tex]

- Squaring [tex]\(a\)[/tex], we get:
[tex]\[ (a)^2 = a^2 \][/tex]

- Squaring [tex]\(b\)[/tex], we get:
[tex]\[ (b)^2 = b^2 \][/tex]

4. Combine the results:
Now, multiply these squared terms together:
[tex]\[ 36 \cdot a^2 \cdot b^2 \][/tex]

Hence, the resulting expression is:
[tex]\[ 36 a^2 b^2 \][/tex]

So, the correct answer is:
B. [tex]\(36 a^2 b^2\)[/tex]