Match each equation with its solution.

A. [tex] x - 6 = -4 [/tex] [tex] \square [/tex]
B. [tex] x + 3 = -7 [/tex] [tex] \square [/tex]
C. [tex] 5x = -2 [/tex] [tex] \square [/tex]
D. [tex] 0.5x = 5 [/tex] [tex] \square [/tex]

Solutions:
1. [tex] x = -0.4 [/tex]
2. [tex] x = 10 [/tex]
3. [tex] x = 2 [/tex]
4. [tex] x = -10 [/tex]

Drag each tile to the correct box to match each equation with its solution.



Answer :

Certainly! Let's match each equation with its correct solution.

### Equations and Solutions:

1. [tex]\( x - 6 = -4 \)[/tex]
- To solve for [tex]\(x\)[/tex], add 6 to both sides:
[tex]\[ x - 6 + 6 = -4 + 6 \implies x = 2 \][/tex]

2. [tex]\( x + 3 = -7 \)[/tex]
- To solve for [tex]\(x\)[/tex], subtract 3 from both sides:
[tex]\[ x + 3 - 3 = -7 - 3 \implies x = -10 \][/tex]

3. [tex]\( 5x = -2 \)[/tex]
- To solve for [tex]\(x\)[/tex], divide both sides by 5:
[tex]\[ 5x \div 5 = -2 \div 5 \implies x = -0.4 \][/tex]

4. [tex]\( 0.5x = 5 \)[/tex]
- To solve for [tex]\(x\)[/tex], divide both sides by 0.5:
[tex]\[ 0.5x \div 0.5 = 5 \div 0.5 \implies x = 10 \][/tex]

### Matching the Equations with Solutions:

- [tex]\( x - 6 = -4 \)[/tex] [tex]\(\rightarrow x = 2\)[/tex]
- [tex]\( x + 3 = -7 \)[/tex] [tex]\(\rightarrow x = -10\)[/tex]
- [tex]\( 5x = -2 \)[/tex] [tex]\(\rightarrow x = -0.4\)[/tex]
- [tex]\( 0.5x = 5 \)[/tex] [tex]\(\rightarrow x = 10\)[/tex]

So the correct matching of each equation with its solution is:

[tex]\[ \begin{array}{cccc} \text{Equation} & \quad & \text{Solution} & \quad \\ x - 6 = -4 & \rightarrow & x = 2 & \square \\ x + 3 = -7 & \rightarrow & x = -10 & \square \\ 5x = -2 & \rightarrow & x = -0.4 & \square \\ 0.5x = 5 & \rightarrow & x = 10 & \square\\ \end{array} \][/tex]