Answer :
To evaluate the expression [tex]\( \left(\frac{1}{4}\right)^2 \)[/tex], follow these steps:
1. Understand the expression: You need to square the fraction [tex]\(\frac{1}{4}\)[/tex].
2. Square the numerator and the denominator separately:
- The numerator is [tex]\(1\)[/tex].
- The denominator is [tex]\(4\)[/tex].
3. Squaring involves raising each part to the power of 2:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1^2}{4^2} \][/tex]
4. Calculate [tex]\(1^2\)[/tex] and [tex]\(4^2\)[/tex]:
- [tex]\(1^2 = 1\)[/tex]
- [tex]\(4^2 = 16\)[/tex]
5. Write the results as a fraction:
[tex]\[ \frac{1^2}{4^2} = \frac{1}{16} \][/tex]
6. Convert the fraction to a decimal (if needed):
- [tex]\(\frac{1}{16} = 0.0625\)[/tex]
Therefore, the evaluated result is:
[tex]\[ \left(\frac{1}{4}\right)^2 = 0.0625 \][/tex]
1. Understand the expression: You need to square the fraction [tex]\(\frac{1}{4}\)[/tex].
2. Square the numerator and the denominator separately:
- The numerator is [tex]\(1\)[/tex].
- The denominator is [tex]\(4\)[/tex].
3. Squaring involves raising each part to the power of 2:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1^2}{4^2} \][/tex]
4. Calculate [tex]\(1^2\)[/tex] and [tex]\(4^2\)[/tex]:
- [tex]\(1^2 = 1\)[/tex]
- [tex]\(4^2 = 16\)[/tex]
5. Write the results as a fraction:
[tex]\[ \frac{1^2}{4^2} = \frac{1}{16} \][/tex]
6. Convert the fraction to a decimal (if needed):
- [tex]\(\frac{1}{16} = 0.0625\)[/tex]
Therefore, the evaluated result is:
[tex]\[ \left(\frac{1}{4}\right)^2 = 0.0625 \][/tex]