Let's evaluate each of the given expressions step-by-step to find their respective values:
1. Evaluate Choice (A):
[tex]\[
2 \times 0.5 = 1.0
\][/tex]
2. Evaluate Choice (B):
[tex]\[
\frac{3}{0.25} = 12.0
\][/tex]
3. Evaluate Choice (C):
[tex]\[
3 \times 0.25 = 0.75
\][/tex]
4. Evaluate Choice (D):
[tex]\[
\frac{5}{0.25} = 20.0
\][/tex]
5. Evaluate Choice (E):
[tex]\[
\frac{0.2}{4} = 0.05
\][/tex]
Now, we list the results from all the choices:
[tex]\[
\begin{align*}
\text{(A)} & : 1.0 \\
\text{(B)} & : 12.0 \\
\text{(C)} & : 0.75 \\
\text{(D)} & : 20.0 \\
\text{(E)} & : 0.05 \\
\end{align*}
\][/tex]
To find the smallest value, we compare all these results:
[tex]\[
1.0, 12.0, 0.75, 20.0, 0.05
\][/tex]
The smallest value among these is [tex]\( 0.05 \)[/tex]. Therefore, the choice with the smallest value is:
[tex]\[
\text{(E)} \ \frac{0.2}{4}
\][/tex]