Answer :
Let's evaluate each of the given expressions step-by-step to find their respective values:
1. Evaluate Choice (A):
[tex]\[ 2 \times 0.5 = 1.0 \][/tex]
2. Evaluate Choice (B):
[tex]\[ \frac{3}{0.25} = 12.0 \][/tex]
3. Evaluate Choice (C):
[tex]\[ 3 \times 0.25 = 0.75 \][/tex]
4. Evaluate Choice (D):
[tex]\[ \frac{5}{0.25} = 20.0 \][/tex]
5. Evaluate Choice (E):
[tex]\[ \frac{0.2}{4} = 0.05 \][/tex]
Now, we list the results from all the choices:
[tex]\[ \begin{align*} \text{(A)} & : 1.0 \\ \text{(B)} & : 12.0 \\ \text{(C)} & : 0.75 \\ \text{(D)} & : 20.0 \\ \text{(E)} & : 0.05 \\ \end{align*} \][/tex]
To find the smallest value, we compare all these results:
[tex]\[ 1.0, 12.0, 0.75, 20.0, 0.05 \][/tex]
The smallest value among these is [tex]\( 0.05 \)[/tex]. Therefore, the choice with the smallest value is:
[tex]\[ \text{(E)} \ \frac{0.2}{4} \][/tex]
1. Evaluate Choice (A):
[tex]\[ 2 \times 0.5 = 1.0 \][/tex]
2. Evaluate Choice (B):
[tex]\[ \frac{3}{0.25} = 12.0 \][/tex]
3. Evaluate Choice (C):
[tex]\[ 3 \times 0.25 = 0.75 \][/tex]
4. Evaluate Choice (D):
[tex]\[ \frac{5}{0.25} = 20.0 \][/tex]
5. Evaluate Choice (E):
[tex]\[ \frac{0.2}{4} = 0.05 \][/tex]
Now, we list the results from all the choices:
[tex]\[ \begin{align*} \text{(A)} & : 1.0 \\ \text{(B)} & : 12.0 \\ \text{(C)} & : 0.75 \\ \text{(D)} & : 20.0 \\ \text{(E)} & : 0.05 \\ \end{align*} \][/tex]
To find the smallest value, we compare all these results:
[tex]\[ 1.0, 12.0, 0.75, 20.0, 0.05 \][/tex]
The smallest value among these is [tex]\( 0.05 \)[/tex]. Therefore, the choice with the smallest value is:
[tex]\[ \text{(E)} \ \frac{0.2}{4} \][/tex]