Use the following information to answer the next question.

The expression [tex]\left(11m^2 - 7\right) - \left(6m^2 + 3m - 11\right) + \left(3m^2 - m - 9\right)[/tex] can be simplified and written in the form [tex]Am^2 - Bm - C[/tex].

The values of [tex]A, B[/tex], and [tex]C[/tex], in that order (written without spaces or commas) are:



Answer :

To simplify the given expression [tex]\(\left(11 m^2-7\right) - \left(6 m^2 + 3 m - 11\right) + \left(3 m^2 - m - 9\right)\)[/tex], we can follow these steps:

1. Distribute the negative sign to simplify the expression:

[tex]\[ (11m^2 - 7) - (6m^2 + 3m - 11) + (3m^2 - m - 9) \][/tex]

This will give us:

[tex]\[ 11m^2 - 7 - 6m^2 - 3m + 11 + 3m^2 - m - 9 \][/tex]

2. Combine like terms:

- For the [tex]\(m^2\)[/tex] terms:
[tex]\[ 11m^2 - 6m^2 + 3m^2 \][/tex]

Combining these, we get:
[tex]\[ (11 - 6 + 3)m^2 = 8m^2 \][/tex]

- For the [tex]\(m\)[/tex] terms:
[tex]\[ -3m - m \][/tex]

Combining these, we get:
[tex]\[ (-3 - 1)m = -4m \][/tex]

- For the constant terms:
[tex]\[ -7 + 11 - 9 \][/tex]

Combining these, we get:
[tex]\[ -7 + 11 - 9 = -5 \][/tex]

Therefore, the simplified form of the expression is:
[tex]\[ 8m^2 - 4m - 5 \][/tex]

From this, we can identify the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] as follows:
- [tex]\(A = 8\)[/tex] (the coefficient of [tex]\(m^2\)[/tex])
- [tex]\(B = -4\)[/tex] (the coefficient of [tex]\(m\)[/tex])
- [tex]\(C = -5\)[/tex] (the constant term)

Thus, the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] in that order are:

[tex]\[ \boxed{8 -4 -5} \][/tex]