Answer :

To solve the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex], we'll use the quadratic formula, which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:

- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]

Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Substituting the identified values:

[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]

[tex]\[ \Delta = 16 - 16 \][/tex]

[tex]\[ \Delta = 0 \][/tex]

The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).

Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]

[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]

[tex]\[ x = \frac{-4}{2} \][/tex]

[tex]\[ x = -2 \][/tex]

Therefore, the root of the equation is:

[tex]\[ x = -2 \][/tex]

Since the discriminant is 0, both roots are the same:

[tex]\[ x_1 = x_2 = -2 \][/tex]

In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].