Answer :
To solve the problem of converting a temperature of [tex]\( 20^{\circ} \text{C} \)[/tex] to Fahrenheit and selecting the best approximate answer amongst the provided options, we proceed as follows:
1. Understand the formula for conversion: The formula to convert Celsius to Fahrenheit is:
[tex]\[ F = \left(\frac{9}{5} \times C\right) + 32 \][/tex]
Here, [tex]\( F \)[/tex] is the temperature in Fahrenheit, and [tex]\( C \)[/tex] is the temperature in Celsius.
2. Substitute the given Celsius temperature into the formula:
[tex]\[ F = \left(\frac{9}{5} \times 20\right) + 32 \][/tex]
3. Calculate the conversion step-by-step:
- First, multiply [tex]\( 20 \)[/tex] by [tex]\( \frac{9}{5} \)[/tex]:
[tex]\[ \frac{9}{5} \times 20 = 36 \][/tex]
- Then, add [tex]\( 32 \)[/tex] to the result:
[tex]\[ 36 + 32 = 68 \][/tex]
4. Result interpretation: The temperature [tex]\( 20^{\circ} \text{C} \)[/tex] is equivalent to [tex]\( 68^{\circ} \text{F} \)[/tex].
5. Compare with given options:
- A. [tex]\( -6^{\circ} \text{F} \)[/tex]
- B. [tex]\( 68^{\circ} \text{F} \)[/tex]
- C. [tex]\( 32^{\circ} \text{F} \)[/tex]
- D. [tex]\( 136^{\circ} \text{F} \)[/tex]
The correct answer, which is closest to our calculated result, is:
B. [tex]\( 68^{\circ} \text{F} \)[/tex]
1. Understand the formula for conversion: The formula to convert Celsius to Fahrenheit is:
[tex]\[ F = \left(\frac{9}{5} \times C\right) + 32 \][/tex]
Here, [tex]\( F \)[/tex] is the temperature in Fahrenheit, and [tex]\( C \)[/tex] is the temperature in Celsius.
2. Substitute the given Celsius temperature into the formula:
[tex]\[ F = \left(\frac{9}{5} \times 20\right) + 32 \][/tex]
3. Calculate the conversion step-by-step:
- First, multiply [tex]\( 20 \)[/tex] by [tex]\( \frac{9}{5} \)[/tex]:
[tex]\[ \frac{9}{5} \times 20 = 36 \][/tex]
- Then, add [tex]\( 32 \)[/tex] to the result:
[tex]\[ 36 + 32 = 68 \][/tex]
4. Result interpretation: The temperature [tex]\( 20^{\circ} \text{C} \)[/tex] is equivalent to [tex]\( 68^{\circ} \text{F} \)[/tex].
5. Compare with given options:
- A. [tex]\( -6^{\circ} \text{F} \)[/tex]
- B. [tex]\( 68^{\circ} \text{F} \)[/tex]
- C. [tex]\( 32^{\circ} \text{F} \)[/tex]
- D. [tex]\( 136^{\circ} \text{F} \)[/tex]
The correct answer, which is closest to our calculated result, is:
B. [tex]\( 68^{\circ} \text{F} \)[/tex]