Hexagon DEFGHI is translated 8 units down and 3 units to the right. If the coordinates of the pre-image of point [tex]$F$[/tex] are [tex]$(-9, 2)$[/tex], what are the coordinates of [tex][tex]$F'$[/tex][/tex]?

A. [tex]$(-17, 5)$[/tex]
B. [tex]$(-6, -6)$[/tex]
C. [tex][tex]$(-17, -1)$[/tex][/tex]
D. [tex]$(-12, -6)$[/tex]



Answer :

To determine the coordinates of [tex]\( F' \)[/tex], the image of point [tex]\( F \)[/tex] after the translation, we need to apply the translation rules.

The original coordinates of point [tex]\( F \)[/tex] are [tex]\( (-9, 2) \)[/tex].

The translation involves moving the point 8 units down and 3 units to the right.

1. Translation 3 units to the right:
- When we translate a point to the right by 3 units, we add 3 to its x-coordinate.
- Original [tex]\( x \)[/tex]-coordinate: [tex]\( -9 \)[/tex]
- New [tex]\( x \)[/tex]-coordinate: [tex]\( -9 + 3 = -6 \)[/tex]

2. Translation 8 units down:
- When we translate a point down by 8 units, we subtract 8 from its y-coordinate.
- Original [tex]\( y \)[/tex]-coordinate: [tex]\( 2 \)[/tex]
- New [tex]\( y \)[/tex]-coordinate: [tex]\( 2 - 8 = -6 \)[/tex]

Thus, the new coordinates of point [tex]\( F' \)[/tex] after the translation are [tex]\( (-6, -6) \)[/tex].

Therefore, the correct answer is [tex]\( \boxed{(-6, -6)} \)[/tex].