Select the correct answer.

What is the value of this expression when [tex]\(a=7\)[/tex] and [tex]\(b=-4\)[/tex]?

[tex]\[
\frac{|2a| - b}{3}
\][/tex]

A. -6
B. [tex]\(-3 \frac{1}{3}\)[/tex]
C. [tex]\(3 \frac{1}{3}\)[/tex]
D. 6



Answer :

Let's solve the given expression step-by-step to find its value when [tex]\(a = 7\)[/tex] and [tex]\(b = -4\)[/tex]:

The expression is:
[tex]\[ \frac{|2a| - b}{3} \][/tex]

1. Substitute the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = 7 \][/tex]
[tex]\[ b = -4 \][/tex]

2. Calculate [tex]\(2a\)[/tex]:
[tex]\[ 2a = 2 \times 7 = 14 \][/tex]

3. Calculate the absolute value [tex]\(|2a|\)[/tex]:
[tex]\[ |2a| = |14| = 14 \][/tex]

4. Substitute [tex]\(|2a|\)[/tex] and [tex]\(b\)[/tex] into the expression:
[tex]\[ \frac{|2a| - b}{3} = \frac{14 - (-4)}{3} \][/tex]

5. Simplify the expression by handling the double negative:
[tex]\[ 14 - (-4) = 14 + 4 = 18 \][/tex]

6. Divide the result by 3:
[tex]\[ \frac{18}{3} = 6 \][/tex]

Therefore, the value of the expression when [tex]\(a = 7\)[/tex] and [tex]\(b = -4\)[/tex] is:
[tex]\[ \boxed{6} \][/tex]

The correct answer is:
D. 6