If [tex]f(x) = 8 - 10x[/tex] and [tex]g(x) = 5x + 4[/tex], what is the value of [tex](f \cdot g)(-2)[/tex]?

A. [tex]\(-198\)[/tex]
B. [tex]\(-168\)[/tex]
C. 22
D. 78



Answer :

To solve the problem of finding [tex]\((f \cdot g)(-2)\)[/tex] where [tex]\(f(x) = 8 - 10x\)[/tex] and [tex]\(g(x) = 5x + 4\)[/tex], let's follow these steps:

1. Evaluate [tex]\(f(-2)\)[/tex]:
[tex]\[ f(-2) = 8 - 10(-2) = 8 + 20 = 28 \][/tex]

2. Evaluate [tex]\(g(-2)\)[/tex]:
[tex]\[ g(-2) = 5(-2) + 4 = -10 + 4 = -6 \][/tex]

3. Compute the product [tex]\((f \cdot g)(-2)\)[/tex]:
[tex]\[ (f \cdot g)(-2) = f(-2) \cdot g(-2) = 28 \cdot (-6) = -168 \][/tex]

So, the value of [tex]\((f \cdot g)(-2)\)[/tex] is [tex]\(\boxed{-168}\)[/tex].