Which equation justifies why [tex]$7^{\frac{1}{3}} = \sqrt[3]{7}$[/tex]?

A. [tex]$7^{\frac{1}{3}}$[/tex] means the cube root of 7.
B. [tex]$7^{\frac{1}{3}} = 7^{1/3}$[/tex].
C. [tex]\sqrt[3]{7}[tex]$[/tex] is the definition of [tex]$[/tex]7^{\frac{1}{3}}$[/tex].
D. [tex]7^{\frac{1}{3}}$ and [tex]\sqrt[3]{7}[/tex] are equivalent expressions.



Answer :

To justify why [tex]\( 7^{\frac{1}{3}} = \sqrt[3]{7} \)[/tex], we will use the properties of exponents and radicals. Here is a detailed, step-by-step solution:

1. Understand the Relationship Between Radicals and Exponents:
The expression [tex]\( a^{\frac{1}{n}} \)[/tex] is another way of writing the [tex]\( n \)[/tex]th root of [tex]\( a \)[/tex]. This is a fundamental property of exponents and radicals:
[tex]\[ a^{\frac{1}{n}} = \sqrt[n]{a} \][/tex]
In this case, [tex]\( a \)[/tex] is 7 and [tex]\( n \)[/tex] is 3. Therefore:
[tex]\[ 7^{\frac{1}{3}} = \sqrt[3]{7} \][/tex]

2. Simplify the Expression:
Let's explicitly consider the value of the expression [tex]\( 7^{\frac{1}{3}} \)[/tex] and the expression [tex]\( \sqrt[3]{7} \)[/tex]. Both are mathematically equivalent and should yield the same numerical result.
[tex]\[ 7^{\frac{1}{3}} \approx 1.912931182772389 \][/tex]
[tex]\[ \sqrt[3]{7} \approx 1.912931182772389 \][/tex]

3. Compare the Results:
Since both [tex]\( 7^{\frac{1}{3}} \)[/tex] and [tex]\( \sqrt[3]{7} \)[/tex] result in the same value (approximately 1.912931182772389), we conclude that the two expressions are equal.
[tex]\[ 7^{\frac{1}{3}} = \sqrt[3]{7} \][/tex]

4. Justify the Equation:
The equation that justifies the equality is:
[tex]\[ 7^{\frac{1}{3}} = \sqrt[3]{7} \][/tex]

In conclusion, the expressions [tex]\( 7^{\frac{1}{3}} \)[/tex] and [tex]\( \sqrt[3]{7} \)[/tex] are mathematically equivalent as demonstrated by their identical values. Therefore, the equation that justifies their equality is [tex]\( 7^{\frac{1}{3}} = \sqrt[3]{7} \)[/tex].

Other Questions