Determine the measure of [tex]\theta[/tex] for each trigonometric ratio for [tex]0^{\circ} \leq \theta \leq 360^{\circ}[/tex].

[tex]\csc \theta = \sqrt{2}[/tex]



Answer :

To find the measure of [tex]\(\theta\)[/tex] where [tex]\(0^\circ \leq \theta \leq 360^\circ\)[/tex] for [tex]\(\csc \theta = \sqrt{2}\)[/tex], follow these steps:

1. Understand the Relationship between [tex]\(\csc \theta\)[/tex] and [tex]\(\sin \theta\)[/tex]:
The cosecant function is the reciprocal of the sine function, so:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} \][/tex]
Given:
[tex]\[ \csc \theta = \sqrt{2} \][/tex]

2. Find [tex]\(\sin \theta\)[/tex]:
Since [tex]\(\csc \theta = \sqrt{2}\)[/tex],
[tex]\[ \sin \theta = \frac{1}{\csc \theta} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]

3. Determine [tex]\(\theta\)[/tex] using the arcsine function:
The principal value of [tex]\(\theta\)[/tex] (the solution in the first quadrant) can be found using the arcsine function:
[tex]\[ \theta = \arcsin\left(\frac{\sqrt{2}}{2}\right) \][/tex]
The value of [tex]\(\theta\)[/tex] is:
[tex]\[ \theta_1 = 45^\circ \][/tex]

4. Identify Additional Solutions:
Since the sine function is positive in both the first and second quadrants, we need to find:
- The solution in the second quadrant:
[tex]\[ \theta_2 = 180^\circ - \theta_1 = 180^\circ - 45^\circ = 135^\circ \][/tex]

Additionally, considering the periodic nature of the sine function:
- The solution in the third quadrant:
[tex]\[ \theta_3 = 180^\circ + \theta_1 = 180^\circ + 45^\circ = 225^\circ \][/tex]

- The solution in the fourth quadrant:
[tex]\[ \theta_4 = 360^\circ - \theta_1 = 360^\circ - 45^\circ = 315^\circ \][/tex]

Therefore, the measures of [tex]\(\theta\)[/tex] that satisfy [tex]\(\csc \theta = \sqrt{2}\)[/tex] within the interval [tex]\(0^\circ \leq \theta \leq 360^\circ\)[/tex] are:
[tex]\[ \boxed{45.0^\circ, 135.0^\circ, 225.0^\circ, 315.0^\circ} \][/tex]