Solve [tex]\(3x^2 + 13x = 10\)[/tex].

A. [tex]\(x = \frac{2}{3}\)[/tex] and [tex]\(x = -5\)[/tex]

B. [tex]\(x = 3\)[/tex] and [tex]\(x = -3\)[/tex]

C. [tex]\(x = -2\)[/tex] and [tex]\(x = \frac{5}{3}\)[/tex]

D. [tex]\(x = -7\)[/tex] and [tex]\(x = 13\)[/tex]



Answer :

To solve the quadratic equation [tex]\(3x^2 + 13x = 10\)[/tex], follow these steps:

1. Rewrite the equation in standard form:

The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex].

Start with:
[tex]\[3x^2 + 13x = 10\][/tex]

Subtract 10 from both sides to move everything to one side of the equation:
[tex]\[3x^2 + 13x - 10 = 0\][/tex]

2. Identify coefficients in the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = 3, \quad b = 13, \quad c = -10 \][/tex]

3. Solve the quadratic equation using the quadratic formula:

The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Plug the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 3 \cdot (-10)}}{2 \cdot 3} \][/tex]

4. Calculate the discriminant ([tex]\(b^2 - 4ac\)[/tex]):
[tex]\[ b^2 = 13^2 = 169 \][/tex]
[tex]\[ 4ac = 4 \cdot 3 \cdot (-10) = -120 \][/tex]
[tex]\[ b^2 - 4ac = 169 - (-120) = 169 + 120 = 289 \][/tex]

5. Calculate the square root of the discriminant:
[tex]\[ \sqrt{289} = 17 \][/tex]

6. Plug the discriminant back into the quadratic formula:
[tex]\[ x = \frac{-13 \pm 17}{6} \][/tex]

7. Solve for the two possible values of [tex]\(x\)[/tex]:
[tex]\[ x_1 = \frac{-13 + 17}{6} = \frac{4}{6} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{-13 - 17}{6} = \frac{-30}{6} = -5 \][/tex]

8. Conclude the solution:
The solutions to the quadratic equation [tex]\(3x^2 + 13x - 10 = 0\)[/tex] are:
[tex]\[ x = \frac{2}{3} \quad \text{and} \quad x = -5 \][/tex]

Therefore, the correct solutions are:
[tex]\[ x = \frac{2}{3} \quad \text{and} \quad x = -5 \][/tex]

So, the solution is:

[tex]\[ \boxed{x=-5 \quad \text{and} \quad x=\frac{2}{3}} \][/tex]

Other Questions