29. The fourth term in the expansion of [tex]\((y - 2x)^{12}\)[/tex] is:
A. [tex]\(-1760 y^9 x^3\)[/tex]
B. [tex]\(-1076 y^9 x^3\)[/tex]
C. [tex]\(-7160 y^9 x^3\)[/tex]
D. [tex]\(1607 y^9 x^3\)[/tex]
E. None of these

30. If the third term in [tex]\((1 + x)^n\)[/tex] is [tex]\(-\frac{1}{8} x^2\)[/tex], what is the value of [tex]\(n\)[/tex]?
A. [tex]\(\frac{1}{2}\)[/tex]
B. 2
C. 3
D. 4
E. None of these



Answer :

Let's address each question one by one, incorporating all necessary details to make it clear.

---

Problem 29: The fourth term in the expansion of [tex]\((y - 2x)^{12}\)[/tex].

To find specific terms in a binomial expansion, we use the Binomial Theorem, which states:

[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} \cdot a^{n-k} \cdot b^k \][/tex]

Here, we have [tex]\(a = y\)[/tex], [tex]\(b = -2x\)[/tex], and [tex]\(n = 12\)[/tex]. The [tex]\(k\)[/tex]-th term in the expansion (starting from [tex]\(k = 0\)[/tex]) will have the form:

[tex]\[ \binom{12}{k} \cdot y^{12-k} \cdot (-2x)^k \][/tex]

The fourth term (which corresponds to [tex]\(k = 3\)[/tex], because our sequence starts at [tex]\(k = 0\)[/tex]) can be determined by substituting [tex]\(k = 3\)[/tex]:

[tex]\[ \binom{12}{3} \cdot y^{12-3} \cdot (-2x)^3 \][/tex]

Evaluating each part separately:
- [tex]\(\binom{12}{3}\)[/tex] is the binomial coefficient “12 choose 3”:

[tex]\[ \binom{12}{3} = \frac{12!}{3!(12-3)!} = \frac{12!}{3! \cdot 9!} = \frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} = 220 \][/tex]

- [tex]\(y^{12-3} = y^9\)[/tex]
- [tex]\((-2x)^3 = -8x^3\)[/tex]

Putting it all together, the fourth term is:

[tex]\[ 220 \cdot y^9 \cdot (-8x^3) = 220 \cdot -8 \cdot y^9 \cdot x^3 = -1760 y^9 x^3 \][/tex]

Thus, the correct answer is:

(A) [tex]\(-1760 y^9 x^3\)[/tex]

---

Problem 30: If the third term in [tex]\((1 + x)^n\)[/tex] is [tex]\(-\frac{1}{8} x^2\)[/tex], what is the value of [tex]\(n\)[/tex]?

In the binomial expansion of [tex]\((1 + x)^n\)[/tex], the general form of the [tex]\(k\)[/tex]-th term is given by:

[tex]\[ \binom{n}{k} \cdot 1^{n-k} \cdot x^k = \binom{n}{k} \cdot x^k \][/tex]

For the third term, which corresponds to [tex]\(k = 2\)[/tex] (since [tex]\(k\)[/tex] starts at 0), this expression is:

[tex]\[ \binom{n}{2} \cdot x^2 \][/tex]

Given that this term is [tex]\(-\frac{1}{8}x^2\)[/tex], we equate:

[tex]\[ \binom{n}{2} \cdot x^2 = -\frac{1}{8} x^2 \][/tex]

Since [tex]\(x^2\)[/tex] terms on both sides are equal, we focus on the coefficients:

[tex]\[ \binom{n}{2} = -\frac{1}{8} \][/tex]

Evaluating [tex]\(\binom{n}{2}\)[/tex] using its definition:

[tex]\[ \binom{n}{2} = \frac{n(n-1)}{2} \][/tex]

Equating this to [tex]\(-\frac{1}{8}\)[/tex]:

[tex]\[ \frac{n(n-1)}{2} = -\frac{1}{8} \][/tex]

Multiply both sides by 2:

[tex]\[ n(n-1) = -\frac{1}{4} \][/tex]

This equation cannot hold as we can never get a valid integer [tex]\(n\)[/tex] making [tex]\(n(n-1) = -\frac{1}{4}\)[/tex].

Hence, the correct choice is:

(E) None of these