Answer :

Let's solve the equation step by step to determine the missing term [tex]\( ? \)[/tex] in the equation:

[tex]\[ -60 x^5 y^3 = 5 x^3 y \cdot ? \][/tex]

To find the missing term, we'll isolate the question mark (?).

1. Divide both sides of the equation by [tex]\( 5 x^3 y \)[/tex]:

[tex]\[ \frac{-60 x^5 y^3}{5 x^3 y} = \frac{5 x^3 y \cdot ?}{5 x^3 y} \][/tex]

Simplifying the right side, we get:

[tex]\[ \frac{-60 x^5 y^3}{5 x^3 y} = ? \][/tex]

2. Simplify the left side of the equation step by step:

- Simplify the coefficients:

[tex]\[ \frac{-60}{5} = -12 \][/tex]

- Simplify the [tex]\( x \)[/tex]-terms:

[tex]\[ x^5 \div x^3 = x^{5-3} = x^2 \][/tex]

- Simplify the [tex]\( y \)[/tex]-terms:

[tex]\[ y^3 \div y = y^{3-1} = y^2 \][/tex]

3. Combine the simplified terms:

[tex]\[ \frac{-60 x^5 y^3}{5 x^3 y} = -12 x^2 y^2 \][/tex]

So, the missing term [tex]\( ? \)[/tex] is:

[tex]\[ ? = -12 x^2 y^2 \][/tex]

Therefore, the complete equation is:
[tex]\[ -60 x^5 y^3 = 5 x^3 y \cdot (-12 x^2 y^2) \][/tex]