Identify the inverse [tex]g(x)[/tex] of the given relation [tex]f(x)[/tex].

[tex]
\begin{array}{l}
f(x)=\{(8,3),(4,1),(0,-1),(-4,-3)\} \\
g(x)=\{(-4,-3),(0,-1),(4,1),(8,3)\} \\
g(x)=\{(-8,-3),(-4,1),(0,1),(4,3)\} \\
g(x)=\{(8,-3),(4,-1),(0,1),(-4,3)\} \\
g(x)=\{(3,8),(1,4),(-1,0),(-3,-4)\}
\end{array}



Answer :

To identify the inverse [tex]\( g(x) \)[/tex] of the given relation [tex]\( f(x) \)[/tex], we need to determine which of the provided options correctly represents [tex]\( g(x) \)[/tex].

Given relation:
[tex]\[ f(x) = \{(8, 3), (4, 1), (0, -1), (-4, -3)\} \][/tex]

The inverse of a relation is obtained by swapping the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values in each pair of the original relation. Let's swap the values for each pair in [tex]\( f(x) \)[/tex]:

1. Switching [tex]\( (8, 3) \)[/tex] gives [tex]\( (3, 8) \)[/tex]
2. Switching [tex]\( (4, 1) \)[/tex] gives [tex]\( (1, 4) \)[/tex]
3. Switching [tex]\( (0, -1) \)[/tex] gives [tex]\( (-1, 0) \)[/tex]
4. Switching [tex]\( (-4, -3) \)[/tex] gives [tex]\( (-3, -4) \)[/tex]

Therefore, the inverse relation [tex]\( g(x) \)[/tex] should be:
[tex]\[ g(x) = \{(3, 8), (1, 4), (-1, 0), (-3, -4)\} \][/tex]

Now let's compare this with the given options:

1. [tex]\( g(x) = \{(-4, -3), (0, -1), (4, 1), (8, 3)\} \)[/tex]
2. [tex]\( g(x) = \{(-8, -3), (-4, 1), (0, 1), (4, 3)\} \)[/tex]
3. [tex]\( g(x) = \{(8, -3), (4, -1), (0, 1), (-4, 3)\} \)[/tex]
4. [tex]\( g(x) = \{(3, 8), (1, 4), (-1, 0), (-3, -4)\} \)[/tex]

The correct inverse relation is [tex]\( g(x) = \{(3, 8), (1, 4), (-1, 0), (-3, -4)\} \)[/tex], which matches option 4.

Thus, the correct answer is:

[tex]\[ \boxed{4} \][/tex]