Perform the following operation:
[tex]\[ \left(6.0 \times 10^5\right) \times \left(4.0 \times 10^6\right) \][/tex]

What is the answer in correct scientific notation?

A. [tex]\(2.4 \times 10^{12}\)[/tex]

B. [tex]\(24 \times 10^{12}\)[/tex]

C. [tex]\(2.4 \times 10^{11}\)[/tex]

D. [tex]\(24 \times 10^{-1}\)[/tex]



Answer :

To solve the given multiplication and express the result in proper scientific notation, let's follow these steps:

1. Rewrite the expression using the properties of exponents:

The given expression is:
[tex]\[ \left(6.0 \times 10^5\right) \times \left(4.0 \times 10^6\right) \][/tex]

When multiplying numbers in scientific notation, you can multiply the coefficients (the numbers before the exponents) and add the exponents.

2. Multiply the coefficients:
[tex]\[ 6.0 \times 4.0 = 24.0 \][/tex]

3. Add the exponents:
[tex]\[ 10^5 \times 10^6 = 10^{5+6} = 10^{11} \][/tex]

Therefore, the expression now looks like:
[tex]\[ 24.0 \times 10^{11} \][/tex]

4. Express in scientific notation:

Scientific notation requires the coefficient to be a number between 1 and 10. Here, our coefficient is 24.0, which is not between 1 and 10. To adjust it, we can rewrite 24.0 as 2.4 multiplied by 10:

[tex]\[ 24.0 = 2.4 \times 10^1 \][/tex]

5. Combine coefficients and exponents:
[tex]\[ 24.0 \times 10^{11} = (2.4 \times 10^1) \times 10^{11} \][/tex]

Adding the exponents together:
[tex]\[ 2.4 \times 10^{1+11} = 2.4 \times 10^{12} \][/tex]

So, the correct scientific notation for the product is:
[tex]\[ 2.4 \times 10^{12} \][/tex]

Therefore, the correct answer is:
[tex]\[ 2.4 \times 10^{12} \][/tex]