To solve the problem [tex]\(\frac{\left(7.296 \times 10^2\right)}{\left(3.6 \times 10^{-9}\right)}\)[/tex] and express the answer in scientific notation, let's go through the steps involved.
1. Divide the Coefficients:
We have to divide the numbers 7.296 and 3.6, which are the coefficients of the powers of ten.
[tex]\[
\frac{7.296}{3.6} = 2.026666666666667
\][/tex]
2. Subtract the Exponents:
Next, we subtract the exponents of the powers of ten from the numerator and the denominator.
[tex]\[
2 - (-9) = 2 + 9 = 11
\][/tex]
3. Combine the Results:
Now we combine the coefficients and the new exponent to express the answer in scientific notation.
[tex]\[
2.026666666666667 \times 10^{11}
\][/tex]
Therefore, the coefficient (to be entered in the green box) is approximately:
[tex]\[
\boxed{2.026666666666667}
\][/tex]
And the exponent (to be entered in the yellow box) is:
[tex]\[
\boxed{11}
\][/tex]